Scaling of the power exhaust channel in Alcator C-Mod

被引:69
作者
LaBombard, B. [1 ]
Terry, J. L. [1 ]
Hughes, J. W. [1 ]
Brunner, D. [1 ]
Payne, J. [1 ]
Reinke, M. L. [1 ]
Cziegler, I. [1 ]
Granetz, R. [1 ]
Greenwald, M. [1 ]
Hutchinson, I. H. [1 ]
Irby, J. [1 ]
Lin, Y. [1 ]
Lipschultz, B. [1 ]
Ma, Y. [1 ]
Marmar, E. S. [1 ]
Rowan, W. L. [2 ]
Tsujii, N. [1 ]
Wallace, G. [1 ]
Whyte, D. G. [1 ]
Wolfe, S. [1 ]
Wukitch, S. [1 ]
Wurden, G. [3 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
SCRAPE-OFF-LAYER; TOKAMAK EDGE TURBULENCE; TRANSPORT PHENOMENA; DIVERTOR-PHYSICS; HEAT-FLUX; SEPARATRIX;
D O I
10.1063/1.3566059
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parametric dependences of the heat flux footprint on the outer divertor target plate are explored in EDA H-mode and ohmic L-mode plasmas over a wide range of parameters with attached plasma conditions. Heat flux profile shapes are found to be independent of toroidal field strength, independent of power flow along magnetic field lines and insensitive to x-point topology (single-null versus double-null). The magnitudes and widths closely follow that of the "upstream" pressure profile, which are correlated to plasma thermal energy content and plasma current. Heat flux decay lengths near the strike-point in H-and L-mode plasmas scale approximately with the inverse of plasma current, with a diminished dependence at high collisionality in L-mode. Consistent with previous studies, pressure gradients in the boundary scale with plasma current squared, holding the magnetohydrodynamic ballooning parameter approximately invariant at fixed collisionality-strong evidence that critical-gradient transport physics plays a key role in setting the power exhaust channel. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3566059]
引用
收藏
页数:14
相关论文
共 50 条
[31]   Collisionality and magnetic geometry effects on tokamak edge turbulent transport. I. A two-region model with application to blobs [J].
Myra, J. R. ;
Russell, D. A. ;
D'Ippolito, D. A. .
PHYSICS OF PLASMAS, 2006, 13 (11)
[32]   The ARIES-AT advanced tokamak, advanced technology fusion power plant [J].
Najmabadi, F ;
Abdou, A ;
Bromberg, L ;
Brown, T ;
Chan, VC ;
Chu, MC ;
Dahlgren, F ;
El-Guebaly, L ;
Heitzenroederd, P ;
Henderson, D ;
St John, HE ;
Kessel, CE ;
Lao, LL ;
Longhurst, GR ;
Malang, S ;
Mau, TK ;
Merrill, BJ ;
Miller, RL ;
Mogahed, E ;
Moore, RL ;
Petrie, T ;
Petti, DA ;
Politzer, P ;
Steiner, D ;
Synder, P ;
Syaebler, GM ;
Turnbull, AD ;
Tillack, MS ;
Waganer, LM ;
Wang, X ;
West, P ;
Wilson, P .
FUSION ENGINEERING AND DESIGN, 2006, 80 (1-4) :3-23
[33]   Two dimensional radiated power diagnostics on Alcator C-Mod [J].
Reinke, M. L. ;
Hutchinson, I. H. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10) :261
[34]   Phase space of tokamak edge turbulence, the L-H transition, and the formation of the edge pedestal [J].
Rogers, BN ;
Drake, JF ;
Zeiler, A .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4396-4399
[35]   Enhancement of turbulence in tokamaks by magnetic fluctuations [J].
Rogers, BN ;
Drake, JF .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :229-232
[36]   The magnetic field structure of a snowflake divertor [J].
Ryutov, D. D. ;
Cohen, R. H. ;
Rognlien, T. D. ;
Umansky, M. V. .
PHYSICS OF PLASMAS, 2008, 15 (09)
[37]   Pfirsch-Schluter currents in the jet divertor [J].
Schaffer, MJ ;
Chankin, AV ;
Guo, HY ;
Matthews, GF ;
Monk, R .
NUCLEAR FUSION, 1997, 37 (01) :83-99
[38]   Three-dimensional computation of drift Alfven turbulence [J].
Scott, B .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (10) :1635-1668
[39]   Drift wave versus interchange turbulence in tokamak geometry: Linear versus nonlinear mode structure [J].
Scott, BD .
PHYSICS OF PLASMAS, 2005, 12 (06) :1-23
[40]  
SCOTT BD, 2001, 592 IPP MAX PLANCK I, P84024