Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2

被引:93
|
作者
Warren, Jeffrey M. [1 ,2 ]
Poetzelsberger, Elisabeth [2 ]
Wullschleger, Stan D. [1 ]
Thornton, Peter E. [1 ]
Hasenauer, Hubert [2 ]
Norby, Richard J. [1 ]
机构
[1] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[2] Univ Nat Resources & Life Sci BOKU, Dept Forest & Soil Sci, Vienna, Austria
关键词
climate change; FACE; global change; sap flow; streamflow; transpiration; FINE-ROOT RESPONSES; ASPEN-BIRCH FORESTS; AGE-RELATED DECLINE; FREE-AIR ENRICHMENT; DECIDUOUS FOREST; CARBON-DIOXIDE; PINE FOREST; SAP-FLOW; WATER-USE; CANOPY TRANSPIRATION;
D O I
10.1002/eco.173
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Plants influence ecosystem water balance through their physiological, phenological, and biophysical responses to environmental conditions, and their sensitivity to climate change could alter the ecohydrology of future forests. Here we use a combination of measurements, synthesis of existing literature, and modelling to address the consequences of climate change on ecohydrologic processes in forests, especially response to elevated CO2 (eCO(2)). Data assessed from five free-air CO2 enrichment (FACE) sites reveal that eCO(2)-reduced stomatal conductance led to declines in canopy transpiration and stand water use in three closed-canopy forest sites. The other two sites were in the early stages of stand development, where a strong eCO(2)-stimulation of canopy leaf area led to enhanced stand water use. In the sweetgum FACE experiment in Oak Ridge, Tennessee (USA), eCO(2) reduced seasonal transpiration by 10-16%. Intra-annual peak measured fluxes in transpiration ranged from 4.0-5.5 mm day(-1), depending on year. The Biome-BGC model simulated similar rates of transpiration at this site, including the relative reductions in response to eCO(2). As a result, simulations predict similar to 75 mm average annual increase in potential water yield in response to eCO(2). The direct effect of eCO(2) on forest water balance through reductions in transpiration could be considerable, especially following canopy closure and development of maximal leaf area index. Complementary, indirect effects of eCO(2) include potential increases in root or leaf litter and soil organic matter, shifts in root distribution, and altered patterns of water extraction. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:196 / 210
页数:15
相关论文
共 50 条
  • [41] Evaluating CO2 effects on semi-empirical and empirical stomatal conductance simulation in land surface models
    Chitsaz, Nastaran
    Guan, Huade
    Shanafield, Margaret
    Batelaan, Okke
    JOURNAL OF HYDROLOGY, 2023, 620
  • [42] Impacts of elevated CO2 and temperature on the soil fauna of boreal forests
    Haimi, J
    Laamanen, J
    Penttinen, R
    Räty, M
    Koponen, S
    Kellomäki, S
    Niemelä, P
    APPLIED SOIL ECOLOGY, 2005, 30 (02) : 104 - 112
  • [43] Impact of elevated CO2 and increased temperature on Japanese beetle herbivory
    Niziolek, Olivia K.
    Berenbaum, May R.
    DeLucia, Evan H.
    INSECT SCIENCE, 2013, 20 (04) : 513 - 523
  • [44] Impact of Elevated Atmospheric and Intercellular CO2 on Plant Defense Mechanisms
    Hill, Amber J.
    Shlisel, Meir
    JOURNAL OF CROP HEALTH, 2024, 76 (06) : 1307 - 1315
  • [45] The impact of global elevated CO2 concentration on photosynthesis and plant productivity
    Reddy, Attipalli R.
    Rasineni, Girish K.
    Raghavendra, Agepati S.
    CURRENT SCIENCE, 2010, 99 (01): : 46 - 57
  • [46] Elevated CO2 concentration regulate the stomatal traits of oilseed rape to alleviate the impact of water deficit on physiological properties
    Li, Fei
    Gao, Xiaodong
    Li, Changjian
    He, Honghua
    Siddique, Kadambot H. M.
    Zhao, Xining
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 211
  • [47] Water usage of old-growth oak at elevated CO2 in the FACE (Free-Air CO2 Enrichment) of climate change
    Quick, Susan E.
    Curioni, Giulio
    Harper, Nicholas J.
    Krause, Stefan
    Mackenzie, A. Robert
    BIOGEOSCIENCES, 2025, 22 (06) : 1557 - 1581
  • [48] Plant responses to decadal scale increments in atmospheric CO2 concentration: comparing two stomatal conductance sampling methods
    Batke, Sven Peter
    Yiotis, Charilaos
    Elliott-Kingston, Caroline
    Holohan, Aidan
    McElwain, Jennifer
    PLANTA, 2020, 251 (02)
  • [49] Water use efficiency in Phaseolus vulgaris exposed to elevated CO2
    Mjwara, JM
    Botha, CEJ
    SECOND INTERNATIONAL SYMPOSIUM ON IRRIGATION OF HORTICULTURAL CROPS, VOLS 1 AND 2, 1997, (449): : 439 - 447
  • [50] Response to CO2 enrichment of understory vegetation in the shade of forests
    Kim, Dohyoung
    Oren, Ram
    Qian, Song S.
    GLOBAL CHANGE BIOLOGY, 2016, 22 (02) : 944 - 956