Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations

被引:0
作者
Belonosov, V. S. [1 ,2 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
关键词
hyperbolic equations; parametric resonance; averaging method; GAS;
D O I
10.1070/SM8883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with parametric resonance under nonlinear periodic perturbations of differential equations which are abstract analogues of hyperbolic systems. A modification of the Krylov-Bogolyubov averaging method capable of circumventing the well-known small divisor problem is applied to reduce the description of solutions of perturbed equations at resonance to the study of autonomous dynamical systems in finite-dimensional spaces.
引用
收藏
页码:1088 / 1112
页数:25
相关论文
共 28 条
[1]  
[Anonymous], TRANSL MATH MONOGR
[2]  
[Anonymous], 1987, PARAMETRIC RESONANCE
[3]  
[Anonymous], 1971, METHOD AVERAGING NON
[4]  
[Anonymous], 1978, GRAD TEXTS MATH
[5]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[6]  
Basaron U. B., 1966, ZH EKSPERIMENT TEOR, V51, P969
[7]   The spectral properties of distributions and asymptotic methods in perturbation theory [J].
Belonosov, V. S. .
SBORNIK MATHEMATICS, 2012, 203 (03) :307-325
[8]  
Belonosov V. S., 2005, USPEKHI MECH, V3, P37
[9]  
Bogolyubov NN, 1974, ASYMPTOTIC METHODS T
[10]  
Corduneanu C., 1989, ALMOST PERIODIC FUNC