Quasistatic crack growth in nonlinear elasticity

被引:240
作者
Dal Maso, G
Francfort, GA
Toader, R
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Paris 13, LPMTM, F-93430 Villetaneuse, France
[3] Dipartimento Ingn Civile, I-33100 Udine, Italy
关键词
D O I
10.1007/s00205-004-0351-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [19]. We consider the case of n-dimensional nonlinear elasticity, for an arbitrary n >= 1, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.
引用
收藏
页码:165 / 225
页数:61
相关论文
共 31 条
  • [11] DALMASO G, 2004, QUASISTATIC CRACK GR
  • [12] DALMASO G, UNPUB SOME QUALITATI
  • [13] De Giorgi E., 1988, ATTI ACCAD NAZ SFMN, V82, P199
  • [14] EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET
    DEGIORGI, E
    CARRIERO, M
    LEACI, A
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) : 195 - 218
  • [15] Doob J.L., 1953, Stochastic processes
  • [16] Federer H., 2014, GEOMETRIC MEASURE TH
  • [17] Revisiting brittle fracture as an energy minimization problem
    Francfort, GA
    Marigo, JJ
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) : 1319 - 1342
  • [18] FRANCFORT GA, 1993, EUR J MECH A-SOLID, V12, P149
  • [19] Existence and convergence for quasi-static evolution in brittle fracture
    Francfort, GA
    Larsen, CJ
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (10) : 1465 - 1500
  • [20] Griffits A.A., 1920, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, V221, P163, DOI DOI 10.1098/RSTA.1921.0006