Large-Area Hybrid Plasmonic Optical Cavity (HPOC) Substrates for Surface-Enhanced Raman Spectroscopy

被引:64
|
作者
Liu, Bowen [1 ,2 ,3 ]
Yao, Xu [1 ,2 ]
Chen, Shu [3 ]
Lin, Haixin [1 ,2 ]
Yang, Zhilin [3 ]
Liu, Shou [3 ]
Ren, Bin [1 ,2 ,4 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, MOE Key Lab Spectrochem Anal & Instrumentat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen, Peoples R China
[3] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Xiamen 361005, Peoples R China
关键词
flexible substrates; hybrid plasmonic structures; optical cavities; SERS substrates; SCATTERING; ARRAYS; NANOPARTICLES; UNIFORM; SERS; DNA; LITHOGRAPHY; NANOANTENNA; FABRICATION; ANTENNAS;
D O I
10.1002/adfm.201802263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is receiving increasing interests owing to its high sensitivity and molecular fingerprint information. The practical application of SERS relies on the highly enhancing, uniform, reproducible, and affordable substrates. A novel gap-free 3D SERS substrate with unique hybrid plasmonic and optical cavity (HPOC) structures to improve the uniformity and reduce the fabrication cost while maintaining the high SERS enhancement is introduced here. The gold HPOC structures are fabricated by the tunable holographic lithography followed by gold deposition and can be conveniently optimized for a specific excitation wavelength by tuning the cavity length. The substrate shows average enhancement factor larger than 10(6) and excellent uniformity with a standard deviation smaller than 6.7%. Together with the capability to be fabricated on a flexible polyethylene substrate, the HPOC SERS substrate is promising for practical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering
    Li, Kuanguo
    Wang, Yong
    Jiang, Kang
    Ren, Yuan
    Dai, Yanqiu
    Lu, Yonghua
    Wang, Pei
    NANOTECHNOLOGY, 2016, 27 (49)
  • [2] Large-area nanostructured substrates for surface enhanced Raman spectroscopy
    Shevchenko, Andriy
    Ovchinnikov, Victor
    Shevchenko, Anna
    APPLIED PHYSICS LETTERS, 2012, 100 (17)
  • [3] Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene
    Mhlanga, Nikiwe
    Ntho, Thabang A.
    Chauke, Hleko
    Sikhwivhilu, Lucky
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [4] Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy
    Michalowska, Aleksandra
    Kudelski, Andrzej
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 308
  • [5] Au Nanoparticles on Superhydrophobic Scaffolds for Large-Area Surface-Enhanced Raman Scattering Substrates
    Sun, Yingnan
    Song, Yuhan
    Sun, Haohan
    Tian, Qingqing
    Wang, Qian
    Liu, Yongshu
    Zhang, Shusheng
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11080 - 11090
  • [6] Large-area bi-functional nano-mushroom plasmonic sensor for colorimetry and surface-enhanced Raman spectroscopy
    Xu, Zhida
    Khan, Ibrahim
    Han, Kevin
    Jiang, Jing
    Liu, Gang Logan
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [7] Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates
    Matricardi, Cristiano
    Hanske, Christoph
    Garcia-Pomar, Juan Luis
    Langer, Judith
    Mihi, Agustin
    Liz-Marzan, Luis M.
    ACS NANO, 2018, 12 (08) : 8531 - 8539
  • [8] Large-area, cost-effective Surface-Enhanced Raman Scattering (SERS) substrates fabrication
    Laariedh, F.
    Sow, I.
    Ferchichi, A.
    Zelsmann, M.
    Boussey, J.
    MICROELECTRONIC ENGINEERING, 2015, 145 : 124 - 127
  • [9] Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors
    Caldwell, Joshua D.
    Glembocki, Orest
    Bezares, Francisco J.
    Bassim, Nabil D.
    Rendell, Ronald W.
    Feygelson, Mariya
    Ukaegbu, Maraizu
    Kasica, Richard
    Shirey, Loretta
    Hosten, Charles
    ACS NANO, 2011, 5 (05) : 4046 - 4055
  • [10] Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping
    Palla, Mirko
    Bosco, Filippo G.
    Yang, Jaeyoung
    Rindzevicius, Tomas
    Alstrom, Tommy S.
    Schmidt, Michael S.
    Lin, Qiao
    Ju, Jingyue
    Boisen, Anja
    RSC ADVANCES, 2015, 5 (104): : 85845 - 85853