High order compact Alternating Direction Implicit method for the generalized sine-Gordon equation

被引:56
作者
Cui, Mingrong [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Sine-Gordon equation; High order compact scheme; Alternating Direction Implicit method; Finite difference; Error estimate; REACTION-DIFFUSION EQUATIONS; NUMERICAL-SOLUTION; SCHEME;
D O I
10.1016/j.cam.2010.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
High order compact Alternating Direction Implicit scheme is given for solving the generalized sine-Gordon equation in a two-dimensional rectangular domain. We apply the compact finite difference operators to obtain a fourth order discretization for the second order space derivatives, and we give a linearized three time level algorithm for solving the original nonlinear equation. Error estimate is given by the energy method. Numerical results are provided to verify the accuracy and efficiency of this algorithm. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:837 / 849
页数:13
相关论文
共 29 条
[1]   HIGHLY ACCURATE COMPACT IMPLICIT METHODS AND BOUNDARY-CONDITIONS [J].
ADAM, Y .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 24 (01) :10-22
[2]  
[Anonymous], 2013, MATRIX ANAL
[3]   The solution of the two-dimensional sine-Gordon equation using the method of lines [J].
Bratsos, A. G. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :251-277
[4]   Fourth-Order Compact Scheme for the One-Dimensional Sine-Gordon Equation [J].
Cui, Mingrong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (03) :685-711
[5]   Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :400-410
[6]   ALTERNATING DIRECTION METHODS FOR NONLINEAR TIME-DEPENDENT PROBLEMS [J].
DENDY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :313-326
[7]   NUMERICAL-SOLUTIONS OF A DAMPED SINE-GORDON EQUATION IN 2 SPACE VARIABLES [J].
DJIDJELI, K ;
PRICE, WG ;
TWIZELL, EH .
JOURNAL OF ENGINEERING MATHEMATICS, 1995, 29 (04) :347-369
[8]   ON THE NUMERICAL INTEGRATION OF D2U-DX2+D2U-DY2=DU-D+ IMPLICIT METHODS [J].
DOUGLAS, J .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :42-65
[9]  
Douglas J., 1964, Numerische and Mathematik, V82, P428
[10]  
Fairweather G., 1967, SIAM Journal on Numerical Analysis, V4, P163, DOI DOI 10.1137/0704016