NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors

被引:771
作者
Shen, Laifa [1 ]
Wang, Jie [1 ]
Xu, Guiyin [1 ]
Li, Hongsen [1 ]
Dou, Hui [1 ]
Zhang, Xiaogang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Mat & Technol Energy Convers, Coll Mat Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE SUPERCAPACITORS; FLEXIBLE ASYMMETRIC SUPERCAPACITORS; BINDER-FREE ELECTRODES; IN-SITU GROWTH; NANOTUBE ARRAYS; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; NANOWIRE ARRAYS; NICKEL FOAM; GRAPHENE;
D O I
10.1002/aenm.201400977
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high-performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono-metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen-doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two-step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni-Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g(-1) at 20 A g(-1)) and excellent cycling stability. Moreover, a binder-free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (similar to 45.5 Wh kg(-1) at 512 W kg(-1)).
引用
收藏
页数:7
相关论文
共 43 条
[1]   Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors [J].
Bo, Zheng ;
Zhu, Weiguang ;
Ma, Wei ;
Wen, Zhenhai ;
Shuai, Xiaorui ;
Chen, Junhong ;
Yan, Jianhua ;
Wang, Zhihua ;
Cen, Kefa ;
Feng, Xinliang .
ADVANCED MATERIALS, 2013, 25 (40) :5799-+
[2]   In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Xia, Dandan ;
Zhao, Yuandong ;
Guo, Danqing ;
Qi, Tong ;
Wan, Houzhao .
JOURNAL OF POWER SOURCES, 2014, 254 :249-257
[3]   Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Wan, Houzhao ;
Qi, Tong ;
Xia, Dandan .
NANOSCALE, 2013, 5 (19) :8879-8883
[4]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[5]   One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance [J].
Chen, Hao ;
Hu, Linfeng ;
Yan, Yan ;
Che, Renchao ;
Chen, Min ;
Wu, Limin .
ADVANCED ENERGY MATERIALS, 2013, 3 (12) :1636-1646
[6]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[7]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[8]   High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Wen, Jing ;
Zhang, Yuewei ;
Shen, Meiqing ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2011, 23 (06) :791-+
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors [J].
Fan, Zhuangjun ;
Yan, Jun ;
Zhi, Linjie ;
Zhang, Qiang ;
Wei, Tong ;
Feng, Jing ;
Zhang, Milin ;
Qian, Weizhong ;
Wei, Fei .
ADVANCED MATERIALS, 2010, 22 (33) :3723-+