Dashboard: Nonintrusive Electromechanical Fault Detection and Diagnostics

被引:1
作者
Green, Daisy [1 ]
Lindahl, Peter [1 ]
Leeb, Steven [1 ]
Kane, Thomas [1 ,2 ]
Kidwell, Stephen [1 ,2 ]
Donnal, John [3 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] US Coast Guard, Cambridge, MA 02139 USA
[3] US Naval Acad, Annapolis, MD 21402 USA
来源
2019 IEEE AUTOTESTCON | 2019年
关键词
Condition-based maintenance; energy efficiency; fault detection; Nonintrusive load monitoring;
D O I
10.1109/autotestcon43700.2019.8961062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern power monitoring systems record vast amounts of equipment operational data. For these systems to improve efficiency and performance, the data must be presented as an intuitive decision aid for watchstanders. The Nonintrusive Load Monitor (NILM) dashboard provides actionable information for energy scorekeeping, activity tracking, and equipment fault detection and diagnostics (FDD). Electrical monitoring through the NILM dashboard can identify both "soft" faults (the gradual degradation of equipment performance) and "hard" faults (the complete failure of a piece of equipment). This paper presents metrics and visualizations that have proven useful for FDD. Analysis is presented from case studies of the NILM dashboard for identifying fault conditions aboard two United States Coast Guard cutters (USCGCs), SPENCER and ESCANABA.
引用
收藏
页数:9
相关论文
共 17 条
[1]   NILM Dashboard: A Power System Monitor for Electromechanical Equipment Diagnostics [J].
Aboulian, Andre ;
Green, Daisy H. ;
Switzer, Jennifer F. ;
Kane, Thomas J. ;
Bredariol, Gregory V. ;
Lindahl, Peter ;
Donnal, John S. ;
Leeb, Steven B. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (03) :1405-1414
[2]  
Beebe R., 2008, PUMP MAG, V58, P20
[3]   Common faults and their impacts for rooftop air conditioners [J].
Breuker, MS ;
Braun, JE .
HVAC&R RESEARCH, 1998, 4 (03) :303-318
[4]   From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis [J].
Dai, Xuewu ;
Gao, Zhiwei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) :2226-2238
[5]   Challenges in the industrial applications of fault diagnostic systems [J].
Dash, S ;
Venkatasubramanian, V .
COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) :785-791
[6]  
De Smith M.J., 2018, Statistical analysis handbook
[7]  
Green D., 2019, IEEE T IND INFORM
[8]   NONINTRUSIVE APPLIANCE LOAD MONITORING [J].
HART, GW .
PROCEEDINGS OF THE IEEE, 1992, 80 (12) :1870-1891
[9]   A review on machinery diagnostics and prognostics implementing condition-based maintenance [J].
Jardine, Andrew K. S. ;
Lin, Daming ;
Banjevic, Dragan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (07) :1483-1510
[10]  
Laughman C., 2003, IEEE Power & Energy Magazine, V1, P56, DOI 10.1109/MPAE.2003.1192027