Radial lattice quantization of 3D φ4 field theory

被引:10
作者
Brower, Richard C. [1 ]
Fleming, George T. [2 ]
Gasbarro, Andrew D. [3 ]
Howarth, Dean [4 ]
Raben, Timothy G. [5 ]
Tan, Chung-, I [6 ]
Weinberg, Evan S. [7 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Yale Univ, Sloane Lab, New Haven, CT 06520 USA
[3] Univ Bern, AEC Inst Theoret Phys, CH-3012 Bern, Switzerland
[4] Lawrence Livermore Natl Lab, Nucl Sci Div, Livermore, CA 94550 USA
[5] Michigan State Univ, E Lansing, MI 48824 USA
[6] Brown Univ, Providence, RI 02912 USA
[7] NVIDIA Corp, Santa Clara, CA 95050 USA
基金
瑞士国家科学基金会;
关键词
CURVED SPACETIME; FORMALISM; GRAVITY;
D O I
10.1103/PhysRevD.104.094502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The quantum extension of classical finite elements, referred to as quantum finite elements (QFE) [R. C. Brower et al., Lattice phi(4) field theory on Riemann manifolds: Numerical tests for the 2-d Ising CFT on S-2, Phys. Rev. D 98, 014502 (2018). and R. C. Brower et al., Lattice dirac fermions on a simplicial Riemannian manifold, Phys. Rev. D 95, 114510 (2017)1, is applied to the radial quantization of 3D phi(4) theory on a simplicial lattice for the R x S-2 manifold. Explicit counterterms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory. Using the Brower-Tamayo [Embedded Dynamics for phi(4) Theory, Phys. Rev. Lett. 62, 1087 (1989).] cluster Monte Carlo algorithm, numerical results support the QFE ansatz that the critical conformal field theory (CFT) is reached in the continuum with the full isometrics of R x S-2 restored. The Ricci curvature term, while technically irrelevant in the quantum theory, is shown to dramatically improve the convergence, opening the way for high precision Monte Carlo simulation to determine the CFT data; operator dimensions, trilinear operator product expansion couplings, and the central charge.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Anand N., ARXIV200513544
[2]   Stealth dark matter: Dark scalar baryons through the Higgs portal [J].
Appelquist, T. ;
Brower, R. C. ;
Buchoff, M. I. ;
Fleming, G. T. ;
Jin, X. -Y. ;
Kiskis, J. ;
Kribs, G. D. ;
Neil, E. T. ;
Osborn, J. C. ;
Rebbi, C. ;
Rinaldi, E. ;
Schaich, D. ;
Schroeder, C. ;
Syritsyn, S. ;
Vranas, P. ;
Weinberg, E. ;
Witzel, O. .
PHYSICAL REVIEW D, 2015, 92 (07)
[3]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[4]   Composite Higgs model at a conformal fixed point [J].
Brower, R. C. ;
Hasenfratz, A. ;
Rebbi, C. ;
Weinberg, E. ;
Witzel, O. .
PHYSICAL REVIEW D, 2016, 93 (07)
[5]   Lattice radial quantization: 3D Ising [J].
Brower, R. C. ;
Fleming, G. T. ;
Neuberger, H. .
PHYSICS LETTERS B, 2013, 721 (4-5) :299-305
[6]  
Brower R. C., ARXIV191207606
[7]   EMBEDDED DYNAMICS FOR PHI-4 THEORY [J].
BROWER, RC ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1087-1090
[8]   Lattice gauge theory for physics beyond the Standard Model [J].
Brower, Richard C. ;
Hasenfratz, Anna ;
Neil, Ethan T. ;
Catterall, Simon ;
Fleming, George ;
Giedt, Joel ;
Rinaldi, Enrico ;
Schaich, David ;
Weinberg, Evan ;
Witzel, Oliver .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)
[9]   Lattice φ4 field theory on Riemann manifolds: Numerical tests for the 2D Ising CFT on S2 [J].
Brower, Richard C. ;
Cheng, Michael ;
Weinberg, Evan S. ;
Fleming, George T. ;
Gasbarro, Andrew D. ;
Raben, Timothy G. ;
Tan, Chung-, I .
PHYSICAL REVIEW D, 2018, 98 (01)
[10]   Lattice Dirac fermions on a simplicial Riemannian manifold [J].
Brower, Richard C. ;
Weinberg, Evan S. ;
Fleming, George T. ;
Gasbarro, Andrew D. ;
Raben, Timothy G. ;
Tan, Chung-I .
PHYSICAL REVIEW D, 2017, 95 (11)