Vector variational inequality as a tool for studying vector optimization problems

被引:139
作者
Lee, GM
Kim, DS
Lee, BS
Yen, ND
机构
[1] Pukyong Natl Univ, Dept Math Appl, Nam Gu, Pusan 608737, South Korea
[2] Kyungsung Univ, Dept Math, Nam Gu, Pusan 608736, South Korea
[3] Inst Math, Hanoi 10000, Vietnam
关键词
vector variational inequality; vector optimization problem; strong monotonicity; strong convexity; solution set; connectedness; compactness; perturbation; sensitivity;
D O I
10.1016/S0362-546X(97)00578-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:745 / 765
页数:21
相关论文
共 25 条
[1]   LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX MINIMIZATION PROBLEMS [J].
AUBIN, JP .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) :87-111
[2]  
Chen G., 1987, INTERACTIVE INTELLIG, P408, DOI [10.1007/978-3-642-46607-6_44, DOI 10.1007/978-3-642-46607-6_44]
[3]  
Chen G.-Y., 1990, ZOR, Methods and Models of Operations Research, V34, P1, DOI 10.1007/BF01415945
[4]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[5]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[6]   SENSITIVITY ANALYSIS IN VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (03) :421-434
[7]  
Giannessi F., VARIATIONAL INEQUALI, P151
[8]  
KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
[9]   GENERALIZED VECTOR VARIATIONAL INEQUALITY AND FUZZY EXTENSION [J].
LEE, GM ;
KIM, DS ;
LEE, BS ;
CHO, SJ .
APPLIED MATHEMATICS LETTERS, 1993, 6 (06) :47-51
[10]   Generalized vector variational inequality [J].
Lee, GM ;
Kim, DS ;
Lee, BS .
APPLIED MATHEMATICS LETTERS, 1996, 9 (01) :39-42