On the Parallel Proximal Decomposition Method for Solving the Problems of Convex Optimization

被引:9
作者
Semenov, V. V. [1 ]
机构
[1] Kiev Natl Taras Shevchenko Univ, Kiev, Ukraine
关键词
convex optimization; parallel proximal decomposition; parallel computer systems; parallel decomposition algorithm; parallel processing; MONOTONE-OPERATORS; CONVERGENCE; ALGORITHMS; SUM;
D O I
10.1615/JAutomatInfScien.v42.i4.20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The parallel proximal decomposition algorithm for solving the problem of convex minimization in the Hilbert space is studied. The theorem on weak convergence of Cesaro averages of the sequence generated by the algorithm is proved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 19 条
[1]  
ACKER F., 1980, ANN FAC SCI TOULOUSE, V2, P1
[2]  
[Anonymous], 2002, Optimization methods
[3]  
Attouch H, 2008, J CONVEX ANAL, V15, P485
[4]   A new class of alternating proximal minimization algorithms with costs-to-move [J].
Attouch, H. ;
Redont, P. ;
Soubeyran, A. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) :1061-1081
[5]   On the convergence of the proximal algorithm for nonsmooth functions involving analytic features [J].
Attouch, Hedy ;
Bolte, Jerome .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :5-16
[6]  
BENSUSAN A, 1975, METHODS DECOMPOSITIO
[7]  
CEA J, 1973, OPTIMISATION THEORIE
[8]   A proximal decomposition method for solving convex variational inverse problems [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
INVERSE PROBLEMS, 2008, 24 (06)
[9]  
Ekeland I., 1979, Convex Analysis and Variation Problems
[10]  
ERMOLIEV YM, 1987, CYBERNETICS, P3