Maxwell's equations in a polyhedron: a density result

被引:11
作者
Ciarlet, P [1 ]
Hazard, C [1 ]
Lohrengel, S [1 ]
机构
[1] ENSTA, UMA, F-75739 Paris 15, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 11期
关键词
D O I
10.1016/S0764-4442(98)80184-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, it is proven that, in a polyhedral domain Omega of R-3, smooth fields are dense in the subspaces of H (curl, div; Omega) whose elements have either their tangential trace, or their normal trace, in L-2(partial derivative Omega). To that aim, an explicit knowledge of the singularities of the Laplacian is required. This should allow to solve with nodal, H-1-conforming, finite elements, Maxwell's equations with an impedance condition on the boundary. The proofs are detailed in [8] (in French). (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 8 条
[1]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[2]   A characterization of the orthogonal of Delta(H-2(Omega)boolean AND H-0(1)(Omega)) in L-2(Omega) [J].
Assous, F ;
Ciarlet, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :605-610
[3]   A density result for Maxwell's equations [J].
BenBelgacem, F ;
Bernardi, C ;
Costabel, M ;
Dauge, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06) :731-736
[4]  
BONNETBENDHIA AS, IN PRESS SIAM J APPL
[5]   A REMARK ON THE REGULARITY OF SOLUTIONS OF MAXWELL EQUATIONS ON LIPSCHITZ-DOMAINS [J].
COSTABEL, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (04) :365-368
[6]  
GIRAULT V, 1986, SERIES COMPUTATIONAL, V1341
[7]  
Grisvard P., 1992, RMA, V22
[8]  
LOHRENGEL S, THESIS U PARIS 6