Maxwell's equations in a polyhedron: a density result

被引:11
作者
Ciarlet, P [1 ]
Hazard, C [1 ]
Lohrengel, S [1 ]
机构
[1] ENSTA, UMA, F-75739 Paris 15, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 11期
关键词
D O I
10.1016/S0764-4442(98)80184-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, it is proven that, in a polyhedral domain Omega of R-3, smooth fields are dense in the subspaces of H (curl, div; Omega) whose elements have either their tangential trace, or their normal trace, in L-2(partial derivative Omega). To that aim, an explicit knowledge of the singularities of the Laplacian is required. This should allow to solve with nodal, H-1-conforming, finite elements, Maxwell's equations with an impedance condition on the boundary. The proofs are detailed in [8] (in French). (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 8 条
  • [1] ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS
    ASSOUS, F
    DEGOND, P
    HEINTZE, E
    RAVIART, PA
    SEGRE, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) : 222 - 237
  • [2] A characterization of the orthogonal of Delta(H-2(Omega)boolean AND H-0(1)(Omega)) in L-2(Omega)
    Assous, F
    Ciarlet, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06): : 605 - 610
  • [3] A density result for Maxwell's equations
    BenBelgacem, F
    Bernardi, C
    Costabel, M
    Dauge, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06): : 731 - 736
  • [4] BONNETBENDHIA AS, IN PRESS SIAM J APPL
  • [5] A REMARK ON THE REGULARITY OF SOLUTIONS OF MAXWELL EQUATIONS ON LIPSCHITZ-DOMAINS
    COSTABEL, M
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (04) : 365 - 368
  • [6] GIRAULT V, 1986, SERIES COMPUTATIONAL, V1341
  • [7] Grisvard P., 1992, RMA, V22
  • [8] LOHRENGEL S, THESIS U PARIS 6