RETRACTED: On stability analysis for generalized Minty variational-hemivariational inequality in reflexive Banach spaces (Retracted Article)

被引:1
作者
Ceng, Lu-Chuan [1 ]
Agarwal, Ravi P. [2 ,3 ]
Yao, Jen-Chih [4 ]
Yao, Yonghong [5 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX USA
[3] Florida Inst Technol, Melbourne, FL 32901 USA
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[5] Tianjin Polytech Univ, Dept Math, Tianjin, Peoples R China
关键词
Generalized variational-hemivariational inequality; Stability; Clarke's generalized directional derivative; Pseudomonotone mapping; Reflexive Banach space; NONEXPANSIVE OPERATORS; WELL-POSEDNESS; EXISTENCE;
D O I
10.1186/s13660-018-1890-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability for a class of generalized Minty variational-hemivariational inequalities has been considered in reflexive Banach spaces. We demonstrate the equivalent characterizations of the generalized Minty variational-hemivariational inequality. A stability result is presented for the generalized Minty variational-hemivariational inequality with (f, J)-pseudomonotone mapping.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[2]  
[Anonymous], 2002, Convex Analysis in General Vector Spaces
[3]  
[Anonymous], 1990, OPTIMIZATION NONSMOO
[4]   GENERAL EXISTENCE THEOREMS FOR UNILATERAL PROBLEMS IN CONTINUUM-MECHANICS [J].
BAIOCCHI, C ;
BUTTAZZO, G ;
GASTALDI, F ;
TOMARELLI, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :149-189
[5]  
Carl S., 2005, NONSMOOTH VARIATIONA
[6]   Well-posedness for systems of time-dependent hemivariational inequalities in Banach spaces [J].
Ceng, Lu-Chuan ;
Liou, Yeong-Cheng ;
Yao, Jen-Chih ;
Yao, Yonghong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4318-4336
[7]  
Cho SY, 2018, J NONLINEAR CONVEX A, V19, P251
[8]   Minty variational inequalities, increase-along-rays property and optimization [J].
Crespi, GP ;
Ginchev, I ;
Rocca, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 123 (03) :479-496
[9]   Pseudomonotone variational inequality problems: Existence of solutions [J].
Crouzeix, JP .
MATHEMATICAL PROGRAMMING, 1997, 78 (03) :305-314
[10]   Coercivity conditions and variational inequalities [J].
Daniilidis, A ;
Hadjisavvas, N .
MATHEMATICAL PROGRAMMING, 1999, 86 (02) :433-438