More points than expected on curves over finite field extensions

被引:19
作者
Brock, BW [1 ]
Granville, A
机构
[1] Pepperdine Univ, Div Nat Sci, Malibu, CA 90263 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
D O I
10.1006/ffta.2000.0308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On average, there are q(r) + o(q(r/2)) F-q-rational points on curves of genus g defined over F-qr. This is also true if we restrict our average to genus g curves defined over F-q, provided r is odd or r > 2g. However, if r = 2,4,6,... or 2g then the average is q(r) + q(r/2) + o(q(r/2)). We give a number of proofs of the existence of these q(r/2) extra points, and in some cases give a precise formula, but we are unable to provide a satisfactory explanation for this phenomenon. (C) 2000 Academic Press.
引用
收藏
页码:70 / 91
页数:22
相关论文
共 15 条
[1]  
[Anonymous], 1956, J INDIAN MATH SOC
[2]  
BIRCH BJ, 1968, J LONDON MATH SOC, V43, P57
[3]   The symmetric cube [J].
Bump, D ;
Ginzburg, D ;
Hoffstein, J .
INVENTIONES MATHEMATICAE, 1996, 125 (03) :413-449
[4]  
Deligne P., 1974, I HAUTES ETUDES SCI, V43, P273
[5]   The number of regular semisimple classes of special linear and unitary groups [J].
Fleischmann, P ;
Janiszczak, I ;
Knorr, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 274 :17-26
[6]  
HOWE EW, 1993, COMPOS MATH, V85, P229
[7]  
Katsylo P. I., 1984, Izv. Akad. Nauk SSSR Ser. Mat., V48, P705
[8]   NONSINGULAR PLANE CUBIC CURVES OVER FINITE-FIELDS [J].
SCHOOF, R .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) :183-211
[9]  
SERRE JP, 1983, CR ACAD SCI I-MATH, V296, P397
[10]  
SHIMURA G, 1975, P LOND MATH SOC, V31, P79