Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management

被引:74
|
作者
Shen, Chuanfei [1 ]
Li, Xiang [1 ]
Yang, Guoqing [1 ]
Wang, Yanbin [1 ]
Zhao, Lunyu [1 ]
Mao, Zhiping [1 ,2 ,3 ]
Wang, Bijia [1 ,3 ]
Feng, Xueling [1 ,2 ,3 ]
Sui, Xiaofeng [1 ,3 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Key Lab Sci & Technol Ecotext, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Natl Engn Res Ctr Dyeing & Finishing Text, Shanghai 201620, Peoples R China
[3] Donghua Univ, Innovat Ctr Text Sci & Technol DHU, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrated salt; Paraffin; Phase change materials; Thermal stability; Supercooling degree; EXPANDED GRAPHITE; GRAPHENE AEROGEL; HYDROPHILIC MODIFICATION; BORON-NITRIDE; PERFORMANCE; SALT; CONDUCTIVITY; CONVERSION; NETWORK; FOAM;
D O I
10.1016/j.cej.2019.123958
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal energy storage and management have attracted considerable interest in the field of sustainable control and utilization of energy. Thermal energy storage materials with excellent thermal properties and shape stability are in high demand. Herein, we developed a simple and effective method to fabricate hydrated salt / paraffin composite (HPC) shape-stabilized phase change materials (SSPCMs). Hydrated salt was emulsified into paraffin by an inverse emulsion template method to obtain HPC. Owing to its low volatility, paraffin enhanced the thermal stability of the hydrated salt by preventing its direct contact with the environment. Furthermore, after its crystallization, paraffin provided nucleation sites and functioned as a nucleating agent to promote the crystallization of the hydrated salt. The HPC was then simultaneously impregnated into cellulose sponge (CS), forming the SSPCMs, which exhibited excellent thermal stability, high energy storage density with a phase transition enthalpy of 227.3 J/g, and a reduced supercooling degree. Besides, there was negligible leakage during the test. The efficiency of the SSPCMs as temperature management materials was then tested by using them as a lining in a fully enclosed protective clothing.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Influence of gelatinization conditions on thermal properties of shape-stabilized phase change materials for thermal energy storage
    National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing
    400074, China
    不详
    400067, China
    Gaofenzi Cailiao Kexue Yu Gongcheng, 3 (59-64):
  • [32] Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage
    Han, Lipeng
    Xie, Shaolei
    Sun, Jinhe
    Jia, Yongzhong
    17TH IUMRS INTERNATIONAL CONFERENCE IN ASIA (IUMRS-ICA 2016), 2017, 182
  • [33] Shape-stabilized phase change materials based on porous supports for thermal energy storage applications
    Huang, Xiubing
    Chen, Xiao
    Li, Ang
    Atinafu, Dimberu
    Gao, Hongyi
    Dong, Wenjun
    Wang, Ge
    CHEMICAL ENGINEERING JOURNAL, 2019, 356 : 641 - 661
  • [34] POLYETHYLENE WAX/EPDM BLENDS AS SHAPE-STABILIZED PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE
    Dorigato, A.
    Ciampolillo, M. V.
    Cataldi, A.
    Bersani, M.
    Pegoretti, A.
    RUBBER CHEMISTRY AND TECHNOLOGY, 2017, 90 (03): : 575 - 584
  • [35] Shape-stabilized phase change materials for thermal energy storage based on porous calcium hexaaluminate
    Cai, Zhen
    Wang, Hailu
    Zhan, Hongxing
    Li, Yuanbing
    Li, Shujing
    Xu, Xin
    Yin, Yi
    Wang, Wei
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [36] Preparation and thermal energy storage properties of polyaniline aerogel-based shape-stabilized composite phase change materials
    Li M.
    Ren S.
    Liu X.
    Tao Z.
    Yang H.
    Huang Z.
    Yang M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 458 - 469
  • [37] Thermal energy storage performance of hierarchical porous kaolinite geopolymer based shape-stabilized composite phase change materials
    Zhang, Haomin
    Gao, Huan
    Bernardo, Enrico
    Lei, Shengjun
    Wang, Ling
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 29808 - 29819
  • [38] Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam
    Wang, Zekun
    Zhang, Xiaoguang
    Xu, Yunfei
    Chen, Guo
    Lin, Fankai
    Ding, Hao
    POLYMER, 2021, 237
  • [39] Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management
    Zhu, Jianhui
    An, Qing
    Guo, Qijing
    Yi, Hao
    Xia, Ling
    Song, Shaoxian
    APPLIED CLAY SCIENCE, 2022, 223
  • [40] A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings
    Gandhi, Monika
    Kumar, Ashok
    Elangovan, Rajasekar
    Meena, Chandan Swaroop
    Kulkarni, Kishor S.
    Kumar, Anuj
    Bhanot, Garima
    Kapoor, Nishant R.
    SUSTAINABILITY, 2020, 12 (22) : 1 - 17