Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management

被引:74
|
作者
Shen, Chuanfei [1 ]
Li, Xiang [1 ]
Yang, Guoqing [1 ]
Wang, Yanbin [1 ]
Zhao, Lunyu [1 ]
Mao, Zhiping [1 ,2 ,3 ]
Wang, Bijia [1 ,3 ]
Feng, Xueling [1 ,2 ,3 ]
Sui, Xiaofeng [1 ,3 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Key Lab Sci & Technol Ecotext, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Natl Engn Res Ctr Dyeing & Finishing Text, Shanghai 201620, Peoples R China
[3] Donghua Univ, Innovat Ctr Text Sci & Technol DHU, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrated salt; Paraffin; Phase change materials; Thermal stability; Supercooling degree; EXPANDED GRAPHITE; GRAPHENE AEROGEL; HYDROPHILIC MODIFICATION; BORON-NITRIDE; PERFORMANCE; SALT; CONDUCTIVITY; CONVERSION; NETWORK; FOAM;
D O I
10.1016/j.cej.2019.123958
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal energy storage and management have attracted considerable interest in the field of sustainable control and utilization of energy. Thermal energy storage materials with excellent thermal properties and shape stability are in high demand. Herein, we developed a simple and effective method to fabricate hydrated salt / paraffin composite (HPC) shape-stabilized phase change materials (SSPCMs). Hydrated salt was emulsified into paraffin by an inverse emulsion template method to obtain HPC. Owing to its low volatility, paraffin enhanced the thermal stability of the hydrated salt by preventing its direct contact with the environment. Furthermore, after its crystallization, paraffin provided nucleation sites and functioned as a nucleating agent to promote the crystallization of the hydrated salt. The HPC was then simultaneously impregnated into cellulose sponge (CS), forming the SSPCMs, which exhibited excellent thermal stability, high energy storage density with a phase transition enthalpy of 227.3 J/g, and a reduced supercooling degree. Besides, there was negligible leakage during the test. The efficiency of the SSPCMs as temperature management materials was then tested by using them as a lining in a fully enclosed protective clothing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    Meng Duo
    Zhao Kang
    Wang Anqi
    Wang Baomin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (01): : 231 - 239
  • [22] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    Duo Meng
    Kang Zhao
    Anqi Wang
    Baomin Wang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 231 - 239
  • [23] Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage
    Li, Hui
    Fang, Guiyin
    Liu, Xu
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (06) : 1672 - 1676
  • [24] Green preparation and thermal properties of shape-stabilized paraffin/CS/SiO2 composite for phase change energy storage
    Yue Liu
    Jingde Luan
    Zheng Yan
    Xin Ke
    Colloid and Polymer Science, 2022, 300 : 801 - 812
  • [25] Green preparation and thermal properties of shape-stabilized paraffin/CS/SiO2 composite for phase change energy storage
    Liu, Yue
    Luan, Jingde
    Yan, Zheng
    Ke, Xin
    COLLOID AND POLYMER SCIENCE, 2022, 300 (07) : 801 - 812
  • [26] Synthesis and Characterization of Microencapsulated Paraffin Microcapsules as Shape-Stabilized Thermal Energy Storage Materials
    Chen, Zhi
    Cao, Lei
    Fang, Guiyin
    Shan, Feng
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2013, 17 (02) : 112 - 123
  • [27] Thermal performance of shape-stabilized phase change paraffin wallboard
    Yan Quanying
    Li Lisha
    Liang Chen
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (04) : 185 - 190
  • [28] Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials
    Liu, Zhiyong
    Zang, Chuyue
    Hu, Dan
    Zhang, Yunsheng
    Lv, Henglin
    Liu, Cheng
    She, Wei
    CEMENT & CONCRETE COMPOSITES, 2019, 99 : 165 - 174
  • [29] Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage
    Dominici, Franco
    Miliozzi, Adio
    Torre, Luigi
    ENERGIES, 2021, 14 (21)
  • [30] Preparation and thermal properties of shape-stabilized polyethylene glycol/mesoporous silica composite phase change materials for thermal energy storage
    Wang, Chaoming
    Cai, Zhengyu
    Chen, Ke
    Huang, Jun
    Wang, Tingjun
    ENERGY STORAGE, 2019, 1 (02)