Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management

被引:74
|
作者
Shen, Chuanfei [1 ]
Li, Xiang [1 ]
Yang, Guoqing [1 ]
Wang, Yanbin [1 ]
Zhao, Lunyu [1 ]
Mao, Zhiping [1 ,2 ,3 ]
Wang, Bijia [1 ,3 ]
Feng, Xueling [1 ,2 ,3 ]
Sui, Xiaofeng [1 ,3 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Key Lab Sci & Technol Ecotext, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Natl Engn Res Ctr Dyeing & Finishing Text, Shanghai 201620, Peoples R China
[3] Donghua Univ, Innovat Ctr Text Sci & Technol DHU, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrated salt; Paraffin; Phase change materials; Thermal stability; Supercooling degree; EXPANDED GRAPHITE; GRAPHENE AEROGEL; HYDROPHILIC MODIFICATION; BORON-NITRIDE; PERFORMANCE; SALT; CONDUCTIVITY; CONVERSION; NETWORK; FOAM;
D O I
10.1016/j.cej.2019.123958
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal energy storage and management have attracted considerable interest in the field of sustainable control and utilization of energy. Thermal energy storage materials with excellent thermal properties and shape stability are in high demand. Herein, we developed a simple and effective method to fabricate hydrated salt / paraffin composite (HPC) shape-stabilized phase change materials (SSPCMs). Hydrated salt was emulsified into paraffin by an inverse emulsion template method to obtain HPC. Owing to its low volatility, paraffin enhanced the thermal stability of the hydrated salt by preventing its direct contact with the environment. Furthermore, after its crystallization, paraffin provided nucleation sites and functioned as a nucleating agent to promote the crystallization of the hydrated salt. The HPC was then simultaneously impregnated into cellulose sponge (CS), forming the SSPCMs, which exhibited excellent thermal stability, high energy storage density with a phase transition enthalpy of 227.3 J/g, and a reduced supercooling degree. Besides, there was negligible leakage during the test. The efficiency of the SSPCMs as temperature management materials was then tested by using them as a lining in a fully enclosed protective clothing.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage
    Luo, Yue
    Xiong, Suya
    Huang, Jintao
    Zhang, Feng
    Li, Chongchong
    Min, Yonggang
    Peng, Ruitao
    Liu, Yidong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 231
  • [12] Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage
    Zhang, Yuzhong
    Zheng, Shuilin
    Zhu, Shuquan
    Ma, Jianning
    Sun, Zhiming
    Farid, Mohammed
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 361 - 370
  • [13] Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials
    Sun, Zhiming
    Kong, Weian
    Zheng, Shuilin
    Frost, Ray L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 : 400 - 407
  • [14] Preparation and thermal performance of shape-stabilized energy storage phase change building materials
    Ma, Feng
    Wang, Xiao-Yan
    Li, Fei
    Chen, Ming-Hui
    Cailiao Gongcheng/Journal of Materials Engineering, 2010, (06): : 54 - 58
  • [15] Construction strategies and thermal energy storage applications of shape-stabilized phase change materials
    Yan, Jiahui
    Hu, Dechao
    Wang, Zhiqiang
    Ma, Wenshi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (04)
  • [16] Novel green and sustainable shape-stabilized phase change materials for thermal energy storage
    Lai, Wei-Chi
    Cai, Yi-Ting
    Cai, Yan-Lin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 117 : 257 - 264
  • [17] Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review
    Wang J.-J.
    Xu X.-L.
    Liang K.-Y.
    Wang G.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (01): : 26 - 38
  • [18] Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite
    Mehrali, Mohammad
    Latibari, Sara Tahan
    Mehrali, Mehdi
    Metselaar, Hendrik Simon Cornelis
    Silakhori, Mahyar
    ENERGY CONVERSION AND MANAGEMENT, 2013, 67 : 275 - 282
  • [19] Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage
    Hui Li
    Guiyin Fang
    Xu Liu
    Journal of Materials Science, 2010, 45 : 1672 - 1676
  • [20] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    孟多
    ZHAO Kang
    WANG Anqi
    WANG Baomin
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (01) : 231 - 239