Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation

被引:79
|
作者
Ren, Shoujie [1 ]
Fan, Xiao [1 ]
Shang, Zeyu [1 ]
Shoemaker, Weston R. [1 ]
Ma, Lu [2 ]
Wu, Tianpin [2 ]
Li, Shiguang [3 ]
Klinghoffer, Naomi B. [3 ]
Yu, Miao [4 ]
Liang, Xinhua [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA
[2] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Inst Gas Technol, 1700 South Mt Prospect Rd, Des Plaines, IL 60018 USA
[4] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
关键词
CO(2)hydrogenation; Methanol; Dimethyl ether; CuO/ZnO/ZrO2/Al2O3 (CZZA); Stability; DIMETHYL ETHER SYNTHESIS; CU/ZNO/AL2O3; CATALYSTS; STRUCTURAL-CHANGES; SYNGAS; DEACTIVATION; CUO-ZNO-AL2O3; TECHNOLOGIES; CONVERSION; PRECURSOR; EVIDENCES;
D O I
10.1016/j.jcou.2019.11.013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zirconium (Zr) modified CuO/ZnO/Al2O3 (CZA) catalysts with different aluminum (Al) and Zr contents were synthesized by the co-precipitation method. The synthesized CuO/ZnO/ZrO2/Al2O3(CZZA) catalysts were comprehensively characterized and studied for methanol synthesis via CO2 hydrogenation. The CZZA catalyst showed the highest methanol yield of 12.4 % at 220 degrees C and 2.76 MPa with an optimized catalyst composition of Cu/Zn/Zr/Al (atomic ratio) at 4:2:1:0.5. The CZZA catalyst showed better activity than that of the CZA catalyst and a superior stability for methanol synthesis. There was no decrease in the BET surface area and very lithe coke formation for the spent CZZA catalyst, after 300 h of methanol synthesis. Bifunctional catalysts, composed of CZZA and HZSM-5, were investigated for dimethyl ether (DME) synthesis directly from CO2 hydrogenation, and a maximum DME yield of 18.3 % was obtained at a reaction temperature of 240 degrees C and a pressure of 2.76 MPa. The stability of the bifunctional CZZA and HZSM-5 catalyst during the DME synthesis also significantly improved, as compared to that of the CZA and HZSM-5. A significant decrease in the BET surface area and an increase in coking on the spent CZZA catalyst were observed after 100 h of DME synthesis, indicating a detrimental effect on CZZA stability when a HZSM-5 catalyst was present. The changes in structural properties (e.g., BET surface area and crystallinity) and coking for HZSM-5 could be responsible for the deactivation of the bifunctional catalyst.
引用
收藏
页码:82 / 95
页数:14
相关论文
共 50 条
  • [31] Enhanced CO2 Hydrogenation to Methanol on the Mesostructured Cu-ZnO/Al2O3-ZrO2 Catalyst
    Guo, Qing
    Li, Shaozhong
    Li, Jin
    Hu, Yongke
    Duanmu, Chuansong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) : 8311 - 8321
  • [32] Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol
    Witoon, Thongthai
    Numpilai, Thanapa
    Phongamwong, Thanaree
    Donphai, Waleeporn
    Boonyuen, Chaiyan
    Warakulwit, Chompunuch
    Chareonpanich, Metta
    Limtrakul, Jumras
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 1781 - 1791
  • [33] Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO
    Ren, Hong
    Xu, Cheng-Hua
    Zhao, Hao-Yang
    Wang, Ya-Xue
    Liu, Jie
    Liu, Jian-Ying
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 28 : 261 - 267
  • [34] CO2 Hydrogenation with Cu/ZnO/Al2O3: A Benchmark Study
    Ruland, Holger
    Song Huiqing
    Laudenschleger, Daniel
    Stuermer, Sascha
    Schmidt, Stefan
    He Jiayue
    Kaehler, Kevin
    Muhler, Martin
    Schloegl, Robert
    CHEMCATCHEM, 2020, 12 (12) : 3216 - 3222
  • [35] Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol
    Santana, Cassia S.
    Rasteiro, Leticia F.
    Marcos, Francielle C. F.
    Assaf, Elisabete M.
    Gomes, Janaina F.
    Assaf, Jose M.
    MOLECULAR CATALYSIS, 2022, 528
  • [36] Methanol synthesis by CO and CO2 hydrogenation on Cu/γ-Al2O3 surface in liquid paraffin solution
    Zuo, Zhi-Jun
    Wang, Le
    Han, Pei-De
    Huang, Wei
    APPLIED SURFACE SCIENCE, 2014, 290 : 398 - 404
  • [37] Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation
    Zhang, Yanfei
    Zhong, Liangshu
    Wang, Hui
    Gao, Peng
    Li, Xiaopeng
    Xiao, Shuo
    Ding, Guoji
    Wei, Wei
    Sun, Yuhan
    JOURNAL OF CO2 UTILIZATION, 2016, 15 : 72 - 82
  • [38] Methanol synthesis by catalytic hydrogenation of carbon dioxide on CuO-ZnO-Al2O3 and CuO-ZnO-Al2O3-Ga2O3-MgO catalysts
    Hirano, M
    Imai, T
    Yasutake, T
    Kuroda, K
    KAGAKU KOGAKU RONBUNSHU, 2001, 27 (01) : 15 - 20
  • [39] Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation
    Qi, Tianqinji
    Zhao, Yiming
    Chen, Shaoyun
    Li, Weizuo
    Guo, Xinwen
    Zhang, Yongchun
    Song, Chunshan
    MOLECULAR CATALYSIS, 2021, 514
  • [40] Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation
    Liang, Yannan
    Mao, Dongsen
    Guo, Xiaoming
    Yu, Jun
    Wu, Guisheng
    Ma, Zhen
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 121 : 81 - 91