Multi-channel Lightweight Convolutional Neural Network for Remote Myocardial Infarction Monitoring

被引:17
作者
Cao, Yangjie [1 ]
Wei, Tingting [1 ]
Lin, Nan [1 ]
Zhang, Di [2 ]
Rodrigues, Joel J. P. C. [3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Software, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[3] Univ Fed Piaui, Teresina, Brazil
[4] Inst Telecomunicacoes, Lisbon, Portugal
来源
2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW) | 2020年
关键词
Deep Learning; Convolution Neural Network; Electrocardiogram; Myocardial Infarction;
D O I
10.1109/wcncw48565.2020.9124860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Remote Myocardial Infarction (RMI) monitoring uses electronic devices to detect the electrocardiogram changes and inform the doctor in emergency conditions, which is an effective solution to save the patient's life. In this paper, we propose the Multi-Channel Lightweight CNN (MCL-CNN), which combines electrocardiogram signals from four leads (v2, v3, v5 and aVL) to detect the Anterior MI (AMI). Its multi-channel design allows the convolution of each lead to be independent of each other, and allowing them to find the filter that best suits them. In addition, constructing a lightweight network using different convolutional combinations in the MCL-CNN model, which makes the network has certain advantages in computing runtime parameters and more suitable for mobile devices. Meanwhile, we use balanced cross entropy to solve the problem of dataset class imbalance. These strategies make the MCL-CNN suitable for multi-lead ECG processing. Experimental results using public ECG datasets obtained from the PTB diagnostic database demonstrate that MCL-CNN's accuracy is 96.65%.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]  
[Anonymous], 2003, CARDIOVASC REV REP
[3]   Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier [J].
Arif, Muhammad ;
Malagore, Ijaz A. ;
Afsar, Fayyaz A. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) :279-289
[4]  
BADILINI F, 1992, COMPUT CARDIOL, P179
[5]   China cardiovascular diseases report 2015: a summary [J].
Chen, Wei-Wei ;
Gao, Run-Lin ;
Liu, Li-Sheng ;
Zhu, Man-Lu ;
Wang, Wen ;
Wang, Yong-Jun ;
Wu, Zhao-Su ;
Li, Hui-Jun ;
Gu, Dong-Feng ;
Yang, Yue-Jin ;
Zheng, Zhe ;
Jiang, Li-Xin ;
Hu, Sheng-Shou .
JOURNAL OF GERIATRIC CARDIOLOGY, 2017, 14 (01) :1-10
[6]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[7]  
Duda R.O., 2001, PATTERN ANAL APPL, V1, P335, DOI DOI 10.1007/BF01237942
[8]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[9]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[10]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97