Normal canonical surfaces in projective 3-space

被引:1
作者
Konno, Kazuhiro [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
基金
日本学术振兴会;
关键词
Canonical surface; elliptic singularity; sextic curve; ALGEBRAIC-SURFACES; GENERAL TYPE; CURVES;
D O I
10.1142/S0129167X17500768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Canonical surfaces with geometric genus four are studied assuming that the image of the canonical map is a normal surface in projective 3-space. It is shown that the degree of the image does not exceed 11 - q. Furthermore, normal canonical sextics surfaces are explicitly constructed, extending a former example due to Zariski.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On Non-Null Relatively Normal-Slant Helices in Minkowski 3-Space
    Nesovic, Emilija
    Ozturk, Ufuk
    Ozturk, Esra Betul Koc
    [J]. FILOMAT, 2022, 36 (06) : 2051 - 2062
  • [22] On evolutoids and pedaloids in Minkowski 3-space
    Sekerci, Gulsah Aydin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168
  • [23] Int-amplified Endomorphisms on Normal Projective Surfaces
    Matsuzawa, Yohsuke
    Yoshikawa, Shou
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (04): : 681 - 697
  • [24] Framed clad helices in Euclidean 3-space
    Mak, Mahmut
    [J]. FILOMAT, 2023, 37 (28) : 9627 - 9640
  • [25] A New Angular Measurement in Minkowski 3-Space
    Qian, Jinhua
    Tian, Xueqian
    Liu, Jie
    Kim, Young Ho
    [J]. MATHEMATICS, 2020, 8 (01)
  • [26] On the canonical map of surfaces with q a©3/4 6
    Lopes, Mendes Margarida
    Pardini, Rita
    Pirola, Gian Pietro
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (08) : 1725 - 1739
  • [27] AN APPROACH FOR VECTORIAL MOMENTS IN EUCLIDEAN 3-SPACE
    Sariaydin, Muhammed T.
    Korpinar, Talat
    [J]. HONAM MATHEMATICAL JOURNAL, 2020, 42 (01): : 187 - 195
  • [28] Ruled translating solitons in Minkowski 3-space
    Aydin, Muhittin Evren
    Lopez, Rafael
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [29] On eqiform Darboux helices in Galilean 3-space
    Ozturk, Ufuk
    Ozturk, Esra Betul Koc
    Nesovic, Emilija
    [J]. MATHEMATICAL COMMUNICATIONS, 2018, 23 (02) : 145 - 159
  • [30] Slant helices in the Euclidean 3-space revisited
    Lucas, Pascual
    Antonio Ortega-Yaguees, Jose
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (01) : 133 - 150