Multiplicity results of periodic solutions for a class of second order delay differential systems

被引:11
作者
Wu, Ke [2 ]
Wu, Xian [1 ]
Zhou, Fen [3 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
[2] Zhaotong Coll, Dept Math, Zhaotong 657000, Yunnan, Peoples R China
[3] Zhaotong Coll, Dept Comp Sci, Zhaotong 657000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational methods; Delay differential systems; Critical point; EQUATIONS; EXISTENCE; THEOREM;
D O I
10.1016/j.na.2012.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the periodic boundary value problem {u(t) + lambda u(t - tau) = del F(t, u(t - tau)) a.e. t is an element of [0, 2 tau] u(0) - u(2 tau) = (u) over dot(0) - (u) over dot(2 tau) = 0, (1) where tau > 0 is a given constant, lambda is an element of R is a parameter. The variational principle is given and some multiplicity results of periodic solutions of (1) are obtained directly via variational methods. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5836 / 5844
页数:9
相关论文
共 16 条
[1]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[2]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[3]  
Furumochi T., 1979, APPL ANAL, V9, P279
[4]   Existence of multiple periodic solutions for a class of second-order delay differential equations [J].
Guo, Chengjun ;
Guo, Zhiming .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3285-3297
[5]   Multiplicity results for periodic solutions to delay differential equations via critical point theory [J].
Guo, ZM ;
Yu, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (01) :15-35
[6]  
Jones G.S., 1962, J MATH ANAL APPL, V5, P435, DOI [10.1016/0022-247X(62)90017-3, DOI 10.1016/0022-247X(62)90017-3]
[7]   ORDINARY DIFFERENTIAL EQUATIONS WHICH YIELD PERIODIC-SOLUTIONS OF DIFFERENTIAL DELAY EQUATIONS [J].
KAPLAN, JL ;
YORKE, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (02) :317-324
[8]   The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay [J].
MalletParet, J ;
Sell, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :441-489
[9]   Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions [J].
MalletParet, J ;
Sell, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :385-440
[10]  
Mawhin J., 1989, CRITICAL POINT THEOR, P8