Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion

被引:15
作者
van Neerven, J. M. A. M. [1 ]
Weis, L. [2 ]
机构
[1] Delft Univ Technol, Dept Appl Math Anal, NL-2600 GA Delft, Netherlands
[2] Tech Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
关键词
stochastic integration in Banach spaces; gamma-radonifying operators; property(alpha); measurable linear extensions; stochastic evolution equations;
D O I
10.1007/s11118-008-9088-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a real Banach space with property (alpha) and let W-Gamma be an E-valued Brownian motion with distribution Gamma. We show that a function Psi : [0, T] --> L(E) is stochastically integrable with respect to W-Gamma if and only if Gamma-almost all orbits Psi x are stochastically integrable with respect to a real Brownian motion. This result is derived from an abstract result on existence of Gamma-measurable linear extensions of gamma-radonifying operators with values in spaces of gamma-radonifying operators. As an application we obtain a necessary and sufficient condition for solvability of stochastic evolution equations driven by an E-valued Brownian motion.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 28 条
[1]  
Anderson T.W., 1955, P AM MATH SOC, V6, P170
[2]  
[Anonymous], 1998, GAUSSIAN MEASURES
[3]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[4]  
Clément P, 2000, STUD MATH, V138, P135
[5]   Products of commuting Boolean algebras of projections and Banach space geometry [J].
De Pagter, B ;
Ricker, WJ .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :483-508
[6]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[7]  
DIESTEL J, 1995, CAMBRIDGE STUDIES AD, V34
[8]  
FACK T, 1987, J OPERAT THEOR, V17, P255
[9]   GAUSSIAN LINEAR-OPERATORS [J].
FEYEL, D ;
DELAPRADELLE, A .
POTENTIAL ANALYSIS, 1994, 3 (01) :89-105
[10]  
Haak B.H., 2004, THESIS U KARLSRUHE