Radiative Recombination of Bound Excitons in MoSe2:I2 Layered Crystals

被引:0
|
作者
Siminel, N. [1 ]
Nedelea, V. [1 ,2 ]
Sushkevich, K. [1 ,2 ]
Siminel, A. [1 ]
Micu, A. [1 ]
Kulyuk, L. [1 ]
机构
[1] Inst Appl Phys, Acad St 5, Kishinev 2028, Moldova
[2] Moldova State Univ, Mateevici St 60, Kishinev 2009, Moldova
来源
4TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGIES AND BIOMEDICAL ENGINEERING, ICNBME-2019 | 2020年 / 77卷
关键词
Transition metal dichalcogenides; Molybdenum diselenide; Layered crystals; Intercalation; Luminescence; Bound excitons; TRANSITION-METAL DICHALCOGENIDES; BAND-STRUCTURE; SEMICONDUCTORS; SPECTROSCOPY;
D O I
10.1007/978-3-030-31866-6_55
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The steady-state and time-resolved photoluminescence (PL) of excitons bound on intercalated iodine molecules was studied for the first time in MoSe2:I-2 layered single crystals. Along with narrow exciton spectral lines located near the energy of the MoSe2 indirect bandgap in the region of 0.98-1.06 eV, an IR broadband radiation centered at 0.78 eV and caused by the recombination of photoexcited carriers through the intrinsic lattice defects were found. To describe the temperature dependences of the intensity of steady-state PL, as well as its temporal characteristics, a kinetic model was proposed that takes into account the radiative and non-radiative recombination channels present in this quasi-two-dimensional semiconductor.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 50 条
  • [31] Fabrication and characterization of large-area suspended MoSe2 crystals down to the monolayer
    Varghese, Sebin
    Reig, David Saleta
    Mehew, Jake Dudley
    Block, Alexander
    El Sachat, Alexandros
    Chavez-Angel, Emigdio
    Sledzinska, Marianna
    Ballesteros, Belen
    Torres, Clivia M. Sotomayor
    Tielrooij, Klaas-Jan
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (04):
  • [32] Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe2, MoSe2 and MoTe2
    Arora, Ashish
    Koperski, Maciej
    Slobodeniuk, Artur
    Nogajewski, Karol
    Schmidt, Robert
    Schneider, Robert
    Molas, Maciej R.
    de Vasconcellos, Steffen Michaelis
    Bratschitsch, Rudolf
    Potemski, Marek
    2D MATERIALS, 2019, 6 (01):
  • [33] Phonons in WSe2/MoSe2 van der Waals Heterobilayers
    Mahrouche, Fayssal
    Rezouali, Karim
    Mahtout, Sofiane
    Zaabar, Foudil
    Molina-Sanchez, Alejandro
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (01):
  • [34] Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers
    Torun, Engin
    Miranda, Henrique P. C.
    Molina-Sanchez, Alejandro
    Wirtz, Ludger
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [35] Epitaxial growth of monolayer MoSe2 on GaAs
    Onomitsu, Koji
    Krajewska, Aleksandra
    Neufeld, Ryan A. E.
    Maeda, Fumihiko
    Kumakura, Kazuhide
    Yamamoto, Hideki
    APPLIED PHYSICS EXPRESS, 2016, 9 (11)
  • [36] Surface Passivation of Layered MoSe2 via van der Waals Stacking of Amorphous Hydrocarbon
    Lee, Do-Hyeon
    Dongquoc, Viet
    Hong, Seongin
    Kim, Seung-Il
    Kim, Eunjeong
    Cho, Su-yeon
    Oh, Chang-Hwan
    Je, Yeonjin
    Kwon, Mi Ji
    Vo, Anh Hoang
    Seo, Dong-Bum
    Lee, Jae Hyun
    Kim, Sunkook
    Kim, Eui-Tae
    Park, Jun Hong
    SMALL, 2022, 18 (40)
  • [37] Layered Heterostructures Based on MoS2/MoSe2 Nanosheets Deposited on GaN Substrates for Photodetector Applications
    Maity, Sukhendu
    Sarkar, K.
    Kumar, Praveen
    ACS APPLIED NANO MATERIALS, 2023, 6 (06) : 4224 - 4235
  • [38] Valley and spin dynamics in MoSe2 two-dimensional crystals
    Kumar, Nardeep
    He, Jiaqi
    He, Dawei
    Wang, Yongsheng
    Zhao, Hui
    NANOSCALE, 2014, 6 (21) : 12690 - 12695
  • [39] Electronic Properties of Nitrogene/MoSe2 Heterobilayers
    Li, Rui
    ACTA PHYSICA POLONICA A, 2021, 140 (03) : 204 - 209
  • [40] Theoretical and experimental study of Raman scattering in mixed (MoS2)(x)(MoSe2)(1-x) layered crystals
    Yaremko, A. M.
    Yukhymchuk, V. O.
    Romanyuk, Yu. A.
    Virko, S. V.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2015, 18 (03) : 354 - 361