Blow-up for the nonlinear Schrodinger equation in nonisotropic spaces

被引:23
|
作者
Martel, Y
机构
[1] Lab. d'Analyse Numérique, Univ. Pierre et Marie Curie, 75252 Paris Cedex 05
关键词
nonlinear Schrodinger equation; blow-up in finite time;
D O I
10.1016/S0362-546X(96)00036-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1903 / 1908
页数:6
相关论文
共 50 条
  • [31] Monotonicity properties of the blow-up time for nonlinear Schrodinger equations: Numerical evidence
    Besse, Christophe
    Carles, Remi
    Mauser, Norbert J.
    Stimming, Hans Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (01): : 11 - 36
  • [32] Finite difference approximation for nonlinear Schrodinger equations with application to blow-up computation
    Saito, Norikazu
    Sasaki, Takiko
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 33 (02) : 427 - 470
  • [33] THE LIMIT OF BLOW-UP DYNAMICS SOLUTIONS FOR A CLASS OF NONLINEAR CRITICAL SCHRODINGER EQUATIONS
    Jean-Jacques, N'takpe
    Blin, L. Boua Sobo
    Halima, Nachid
    Gnowille, Kambire D.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 207 - 238
  • [34] Blow-up rate for critical nonlinear Schrdinger equation with Stark potential
    Li, Xiaoguang
    Zhu, Shihui
    APPLICABLE ANALYSIS, 2008, 87 (03) : 303 - 310
  • [35] Finite time blow-up for the nonlinear Schrodinger equation in trapped dipolar quantum gases with arbitrarily positive initial energy
    Yuan, Yi
    Feng, Binhua
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [36] SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION
    Genev, Hristo
    Venkov, George
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05): : 903 - 923
  • [37] Enhancement of the Zakharov-Glassey's method for Blow-up in nonlinear Schrodinger equations
    Sacchetti, Andrea
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (04)
  • [38] Minimal-mass blow-up solutions for nonlinear Schrodinger equations with an inverse potential
    Matsui, Naoki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213
  • [39] Minimal blow-up initial data for potential blow-up solutions to inter-critical Schrodinger equations
    Guo, Qing
    Wang, Hua
    Wang, Xuewen
    APPLICABLE ANALYSIS, 2021, 100 (06) : 1213 - 1228
  • [40] Minimal mass blow up solutions for a double power nonlinear Schrodinger equation
    Le Coz, Stefan
    Martel, Yvan
    Raphael, Pierre
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (03) : 795 - 833