Holographic Storage of Biphoton Entanglement

被引:60
作者
Dai, Han-Ning [1 ,2 ]
Zhang, Han [1 ,2 ]
Yang, Sheng-Jun [1 ,2 ]
Zhao, Tian-Ming [1 ,2 ]
Rui, Jun [1 ,2 ]
Deng, You-Jin [1 ,2 ]
Li, Li [1 ,2 ]
Liu, Nai-Le [1 ,2 ]
Chen, Shuai [1 ,2 ]
Bao, Xiao-Hui [1 ,2 ,3 ]
Jin, Xian-Min [1 ,2 ]
Zhao, Bo [1 ,2 ,4 ]
Pan, Jian-Wei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
[4] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
基金
奥地利科学基金会; 欧洲研究理事会; 中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; QUANTUM MEMORY; LINEAR OPTICS; LIGHT; TOMOGRAPHY; PHOTONS; PULSES;
D O I
10.1103/PhysRevLett.108.210501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 mu s storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Photonic state tomography [J].
Altepeter, JB ;
Jeffrey, ER ;
Kwiat, PG .
ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 52, 2005, 52 :105-159
[2]   Quantum memory for squeezed light [J].
Appel, Juergen ;
Figueroa, Eden ;
Korystov, Dmitry ;
Lobino, M. ;
Lvovsky, A. I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (09)
[3]   Long-distance free-space distribution of quantum entanglement [J].
Aspelmeyer, M ;
Böhm, HR ;
Gyatso, T ;
Jennewein, T ;
Kaltenbaek, R ;
Lindenthal, M ;
Molina-Terriza, G ;
Poppe, A ;
Resch, K ;
Taraba, M ;
Ursin, R ;
Walther, P ;
Zeilinger, A .
SCIENCE, 2003, 301 (5633) :621-623
[4]   Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories [J].
Bao, Xiao-Hui ;
Qian, Yong ;
Yang, Jian ;
Zhang, Han ;
Chen, Zeng-Bing ;
Yang, Tao ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[5]   Storage and retrieval of single photons transmitted between remote quantum memories [J].
Chanelière, T ;
Matsukevich, DN ;
Jenkins, SD ;
Lan, SY ;
Kennedy, TAB ;
Kuzmich, A .
NATURE, 2005, 438 (7069) :833-836
[6]   Demonstration of a stable atom-photon entanglement source for quantum repeaters [J].
Chen, Shuai ;
Chen, Yu-Ao ;
Zhao, Bo ;
Yuan, Zhen-Sheng ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[7]   Mapping photonic entanglement into and out of a quantum memory [J].
Choi, K. S. ;
Deng, H. ;
Laurat, J. ;
Kimble, H. J. .
NATURE, 2008, 452 (7183) :67-U4
[8]   Entanglement of spin waves among four quantum memories [J].
Choi, K. S. ;
Goban, A. ;
Papp, S. B. ;
van Enk, S. J. ;
Kimble, H. J. .
NATURE, 2010, 468 (7322) :412-U235
[9]   Quantum storage of photonic entanglement in a crystal [J].
Clausen, Christoph ;
Usmani, Imam ;
Bussieres, Felix ;
Sangouard, Nicolas ;
Afzelius, Mikael ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
NATURE, 2011, 469 (7331) :508-U79
[10]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&