Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer

被引:21
作者
Bayram, Abdullah [1 ]
Serhatlioglu, Murat [2 ]
Ortac, Bulend [2 ]
Demic, Serafettin [1 ]
Elbuken, Caglar [2 ]
Sen, Mustafa [3 ]
Solmaz, Mehmet Ertugrul [4 ]
机构
[1] Izmir Katip Celebi Univ, Dept Mat Sci & Engn, Izmir, Turkey
[2] Bilkent Univ, Inst Mat Sci & Nanotechnol, Natl Nanotechnol Res Ctr, UNAM, TR-06800 Ankara, Turkey
[3] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkey
[4] Izmir Katip Celebi Univ, Dept Elect & Elect Engn, Izmir, Turkey
关键词
Flow cytometry; Hydrodynamic focusing; Micropipette; 3D printing; Optofluidics; CELL ANALYSIS; DEVICE; SENSITIVITY; DIAGNOSIS;
D O I
10.1016/j.sna.2017.11.056
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, a facile strategy for fabricating a microfluidic flow cytometer using two glass micropipettes with different sizes and a 3D printed millifluidic aligner was presented. Particle confinement was achieved by hydrodynamic focusing using a single sample and sheath flow. Device performance was extracted using the forward and side-scattered optical signals obtained using fiber-coupled laser and photodetectors. The 3-D printing assisted glass capillary microfluidic device is ultra-low-cost, not labor-intensive and takes less than 10 min to fabricate. The present device offers a great alternative to conventional benchtop flow cytometers in terms of optofluidic configuration. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:382 / 387
页数:6
相关论文
共 39 条
[1]  
[Anonymous], J MICROMECH MICROENG
[2]   Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping [J].
Augustsson, Per ;
Karlsen, Jonas T. ;
Su, Hao-Wei ;
Bruus, Henrik ;
Voldman, Joel .
NATURE COMMUNICATIONS, 2016, 7
[3]   Discrete elements for 3D microfluidics [J].
Bhargava, Krisna C. ;
Thompson, Bryant ;
Malmstadt, Noah .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (42) :15013-15018
[4]   The upcoming 3D-printing revolution in microfluidics [J].
Bhattacharjee, Nirveek ;
Urrios, Arturo ;
Kanga, Shawn ;
Folch, Albert .
LAB ON A CHIP, 2016, 16 (10) :1720-1742
[5]   Standing surface acoustic wave (SSAW)-based microfluidic cytometer [J].
Chen, Yuchao ;
Nawaz, Ahmad Ahsan ;
Zhao, Yanhui ;
Huang, Po-Hsun ;
McCoy, J. Phillip ;
Levine, Stewart J. ;
Wang, Lin ;
Huang, Tony Jun .
LAB ON A CHIP, 2014, 14 (05) :916-923
[6]   A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes [J].
Chu, Hyunjung ;
Doh, Il ;
Cho, Young-Ho .
LAB ON A CHIP, 2009, 9 (05) :686-691
[7]   Diagnostic Flow Cytometry and the AIDS Pandemic [J].
Clift, Ian C. .
LABMEDICINE, 2015, 46 (03) :E59-E64
[8]   Lymph Node Fine-Needle Cytology of Non-Hodgkin Lymphoma: Diagnosis and Classification by Flow Cytometry [J].
Cozzolino, Immacolata ;
Rocco, Monia ;
Villani, Giancarlo ;
Picardi, Marco .
ACTA CYTOLOGICA, 2016, 60 (04) :302-314
[9]   Single-layer microfluidic device to realize hydrodynamic 3D flow focusing [J].
Eluru, Gangadhar ;
Julius, Lourdes Albina Nirupa ;
Gorthi, Sai Siva .
LAB ON A CHIP, 2016, 16 (21) :4133-4141
[10]   Flow Cytometry Can Diagnose Classical Hodgkin Lymphoma in Lymph Nodes With High Sensitivity and Specificity [J].
Fromm, Jonathan R. ;
Thomas, Anju ;
Wood, Brent L. .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2009, 131 (03) :322-332