Moving Finite Element Methods for a System of Semi-Linear Fractional Diffusion Equations

被引:1
作者
Ma, Jingtang [1 ]
Zhou, Zhiqiang [1 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element methods; fractional differential equations; predator-prey models; PARTIAL-DIFFERENTIAL-EQUATIONS; ADVECTION-DISPERSION EQUATION; NEUMANN BOUNDARY-CONDITIONS; NUMERICAL APPROXIMATION; SUBDIFFUSION EQUATION; GALERKIN METHODS; SPECTRAL METHOD; SPACE; SCHEME; MESH;
D O I
10.4208/aamm.2015.m1065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-prey models by replacing the second-order derivatives in the spatial variables with fractional derivatives of order less than two. Moving finite element methods are proposed to solve the system of fractional diffusion equations and the convergence rates of the methods are proved. Numerical examples are carried out to confirm the theoretical findings. Some applications in anomalous diffusive Lotka-Volterra and Michaelis-Menten-Holling predator-prey models are studied.
引用
收藏
页码:911 / 931
页数:21
相关论文
共 52 条
[1]   Numerical solutions for fractional reaction-diffusion equations [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) :2212-2226
[2]   Fractional reproduction-dispersal equations and heavy tail dispersal kernels [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (07) :2281-2297
[3]   ANALYSIS OF SOME MOVING SPACE-TIME FINITE-ELEMENT METHODS [J].
BANK, RE ;
SANTOS, RF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (01) :1-18
[4]  
Brauer F., 2000, Mathematical Models in Population Biology and Epidemiology
[5]   BIFURCATIONS IN A PREDATOR-PREY MODEL WITH MEMORY AND DIFFUSION .2. TURING BIFURCATION [J].
CAVANI, M ;
FARKAS, M .
ACTA MATHEMATICA HUNGARICA, 1994, 63 (04) :375-393
[6]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[7]   An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation [J].
Chen, Hongbin ;
Xu, Da ;
Peng, Yulong .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (10) :2178-2197
[8]   A Compact Difference Scheme for an Evolution Equation with a Weakly Singular Kernel [J].
Chen, Hongbin ;
Xu, Da .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (04) :559-572
[9]   High order finite difference WENO schemes for fractional differential equations [J].
Deng, Weihua ;
Du, Shanda ;
Wu, Yujiang .
APPLIED MATHEMATICS LETTERS, 2013, 26 (03) :362-366
[10]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226