Cortical and thalamic connectivity of temporal visual cortical areas 20a and 20b of the domestic ferret (Mustela putorius furo)

被引:5
作者
Dell, Leigh-Anne [1 ]
Innocenti, Giorgio M. [2 ,3 ]
Hilgetag, Claus C. [1 ,4 ]
Manger, Paul R. [5 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Inst Computat Neurosci, Hamburg, Germany
[2] Karolinska Inst, Dept Neurosci, Stockholm, Sweden
[3] Ecole Polytech Fed Lausanne, Brain & Mind Inst, Lausanne, Switzerland
[4] Boston Univ, Dept Hlth Sci, Boston, MA 02215 USA
[5] Univ Witwatersrand, Sch Anat Sci, Fac Hlth Sci, 7 York Rd, ZA-2193 Johannesburg, South Africa
关键词
Carnivora; corpus callosum; cortical evolution; hodology; Mustela putorious furo; visual processing networks; POSTERIOR PARIETAL CORTEX; RETINOTOPIC ORGANIZATION; AFFERENT CONNECTIONS; PREFRONTAL CORTEX; CAT; PROJECTIONS; INTEGRATION; PRINCIPLES; NETWORK; DORSAL;
D O I
10.1002/cne.24632
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The present study describes the ipsilateral and contralateral corticocortical and corticothalamic connectivity of the temporal visual areas 20a and 20b in the ferret using standard anatomical tract-tracing methods. The two temporal visual areas are strongly interconnected, but area 20a is primarily connected to the occipital visual areas, whereas area 20b maintains more widespread connections with the occipital, parietal and suprasylvian visual areas and the secondary auditory cortex. The callosal connectivity, although homotopic, consists mainly of very weak anterograde labeling which was more widespread in area 20a than area 20b. Although areas 20a and 20b are well connected with the visual dorsal thalamus, the injection into area 20a resulted in more anterograde label, whereas more retrograde label was observed in the visual thalamus following the injection into area 20b. Most interestingly, comparisons to previous connectional studies of cat areas 20a and 20b reveal a common pattern of connectivity of the temporal visual cortex in carnivores, where the posterior parietal cortex and the central temporal region (PMLS) provide network points required for dorsal and ventral stream interaction enroute to integration in the prefrontal cortex. This pattern of network connectivity is not dissimilar to that observed in primates, which highlights the ferret as a useful animal model to understand visual sensory integration between the dorsal and ventral streams. The data generated will also contribute to a connectomics database, to facilitate cross species analysis of brain connectomes and wiring principles of the brain.
引用
收藏
页码:1333 / 1347
页数:15
相关论文
共 54 条
[21]   Visuomotor control: Where does vision end and action begin? [J].
Goodale, MA .
CURRENT BIOLOGY, 1998, 8 (14) :R489-R491
[22]   Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse [J].
Goulas, Alexandros ;
Uylings, Harry B. M. ;
Hilgetag, Claus C. .
BRAIN STRUCTURE & FUNCTION, 2017, 222 (03) :1281-1295
[23]  
HEATH CJ, 1971, ERG ANAT ENTWICKLU, V45, P1
[24]   Immunohistochemical Parcellation of the Ferret (Mustela putorius) Visual Cortex Reveals Substantial Homology With the Cat (Felis catus) [J].
Homman-Ludiye, Jihane ;
Manger, Paul R. ;
Bourne, James A. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2010, 518 (21) :4439-4462
[25]   Computational modelling of visual attention [J].
Itti, L ;
Koch, C .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (03) :194-203
[26]   Evolution of Posterior Parietal Cortex and Parietal-Frontal Networks for Specific Actions in Primates [J].
Kaas, Jon H. ;
Stepniewska, Iwona .
JOURNAL OF COMPARATIVE NEUROLOGY, 2016, 524 (03) :595-608
[27]   Sheep don't forget a face [J].
Kendrick, KM ;
da Costa, AP ;
Leigh, AE ;
Hinton, MR ;
Peirce, JW .
NATURE, 2001, 414 (6860) :165-166
[28]   MOTION ANISOTROPIES AND HEADING DETECTION [J].
LAPPE, M ;
RAUSCHECKER, JP .
BIOLOGICAL CYBERNETICS, 1995, 72 (03) :261-277
[29]   Communication in neuronal networks [J].
Laughlin, SB ;
Sejnowski, TJ .
SCIENCE, 2003, 301 (5641) :1870-1874
[30]  
Leopold D. A., 2017, Evolution of Nervous Systems, P203