Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage

被引:45
|
作者
Lu, Bohui [1 ,2 ]
Zhang, Yongxue [1 ,2 ,3 ]
Zhang, Jinya [1 ,2 ]
Zhu, Jianjun [1 ,2 ]
Zhao, Hongyu [1 ,2 ]
Wang, Zixi [1 ,2 ]
机构
[1] China Univ Petr, Coll Mech & Transportat Engn, Beijing 102249, Peoples R China
[2] Beijing Key Lab Proc Fluid Filtrat & Separat, Beijing 102249, Peoples R China
[3] Hainan Med Univ, Sch Int Educ, Haikou 571199, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change material; Nano-Fe3O4; Thermal energy storage; Solar energy; Thermal conductivity; HEAT-TRANSFER ENHANCEMENT; CONDUCTIVITY ENHANCEMENT; PERFORMANCE; PCM; VISCOSITY; FINS;
D O I
10.1016/j.est.2021.103928
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The latent heat thermal energy storage (LHTES) using phase change material (PCM) is one of the most effective measures to store and utilize solar energy. However, its thermal performance is seriously affected by the poor thermal conductivity of PCMs. In the present study, paraffin/nano-Fe3O4 composite PCMs were prepared to enhance the thermal conductivity of PCM and its preparation process was optimized. The thermo-physical properties of composite PCMs were comprehensively characterized and the enhancements of charging and discharging performance were evaluated numerically. Results show that the optimal preparation process is that the mass ratio of oleic acid and nano-Fe3O4 is 1:1, while the power of ultrasonic treatment is 200 W with the duration being 3 h. When the mass fraction of nano-Fe3O4 is 5 wt.%, the thermal conductivity of composite PCM can be enhanced by 53% at the solid state and 79% at the liquid state compared to that of pure paraffin, and the latent heat is reduced by 8.33% and 12.00% during the melting and solidification processes. In addition, it is found that 36.96% and 39.85% reductions in the total charging time and discharging time can be achieved by nano-Fe3O4; meanwhile, its heat stored and heat released decrease by 1.05% and 5.20% relative to the pure paraffin in the same volume.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material
    Xu, Tao
    Li, Yantong
    Chen, Jiayu
    Liu, Junwan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 : 215 - 221
  • [2] Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage
    Sivasamy, P.
    Harikrishnan, S.
    Jayavel, R.
    Hussain, S. Imran
    Kalaiselvam, S.
    Lu, Li
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [3] Preparation and thermal characterization of composite "Paraffin/Red Brick" as a novel form-stable of phase change material for thermal energy storage
    Khedache, Souad
    Makhlouf, Said
    Djefel, Dihia
    Lefebvre, Gilles
    Royon, Laurent
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) : 13771 - 13776
  • [4] Preparation and characterization of paraffin microencapsulated phase change material with double shell for thermal energy storage
    Yu, Xiaokun
    Luan, Jingde
    Chen, Wei
    Tao, Jialu
    THERMOCHIMICA ACTA, 2020, 689
  • [5] Design and optimization of composite phase change material for cylindrical thermal energy storage
    Tamraparni, Achutha
    Hoe, Alison
    Deckard, Michael
    Zhang, Chen
    Malone, Nathan
    Elwany, Alaa
    Shamberger, Patrick J.
    Felts, Jonathan R.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 208
  • [6] Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material
    Zhang, Zhengguo
    Zhang, Ni
    Peng, Jing
    Fang, Xiaoming
    Gao, Xuenong
    Fang, Yutang
    APPLIED ENERGY, 2012, 91 (01) : 426 - 431
  • [7] Thermal properties of paraffin based nano-phase change material as thermal energy storage
    Amin, Muhammad
    Afriyanti, Fitri
    Putra, Nandy
    2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
  • [8] Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems
    Pasupathi, Manoj Kumar
    Alagar, Karthick
    Stalin, Michael Joseph P.
    Matheswaran, M. M.
    Aritra, Ghosh
    ENERGIES, 2020, 13 (19)
  • [9] Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage
    Parameshwaran, R.
    Deepak, K.
    Saravanan, R.
    Kalaiselvam, S.
    APPLIED ENERGY, 2014, 115 : 320 - 330
  • [10] Experimental investigation of the effect of rotating magnetic field on the melting performance enhancement of paraffin/nano-Fe3O4 composite phase change material
    Lu, Bohui
    Zhang, Yongxue
    Xiao, Junfeng
    Hu, Mengqi
    Niu, Yaoyu
    Luo, Mengxi
    Zhu, Jianjun
    Zhang, Jinya
    JOURNAL OF ENERGY STORAGE, 2024, 83