Recent Progress in Two-Dimensional Materials for Electrocatalytic CO2 Reduction

被引:44
作者
Lu, Song [1 ]
Lou, Fengliu [2 ]
Yu, Zhixin [1 ]
机构
[1] Univ Stavanger, Dept Energy & Petr Engn, N-4036 Stavanger, Norway
[2] Beyonder AS, Kanalsletta 2, N-4033 Stavanger, Norway
关键词
carbon dioxide; two-dimensional materials; electrocatalytic reduction; graphene; TMD; MOF; metal oxide nanosheet; SAC; METAL-ORGANIC FRAMEWORKS; NITROGEN-DOPED GRAPHENE; GAS-DIFFUSION ELECTRODES; SINGLE-ATOM CATALYSTS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMIC-ACID; SELECTIVE CONVERSION; HIGH-EFFICIENCY; SOLID SORBENTS;
D O I
10.3390/catal12020228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic CO2 reduction (ECR) is an attractive approach to convert atmospheric CO2 to value-added chemicals and fuels. However, this process is still hindered by sluggish CO2 reaction kinetics and the lack of efficient electrocatalysts. Therefore, new strategies for electrocatalyst design should be developed to solve these problems. Two-dimensional (2D) materials possess great potential in ECR because of their unique electronic and structural properties, excellent electrical conductivity, high atomic utilization and high specific surface area. In this review, we summarize the recent progress on 2D electrocatalysts applied in ECR. We first give a brief description of ECR fundamentals and then discuss in detail the development of different types of 2D electrocatalysts for ECR, including metal, graphene-based materials, transition metal dichalcogenides (TMDs), metal-organic frameworks (MOFs), metal oxide nanosheets and 2D materials incorporated with single atoms as single-atom catalysts (SACs). Metals, such as Ag, Cu, Au, Pt and Pd, graphene-based materials, metal-doped nitric carbide, TMDs and MOFs can mostly only produce CO with a Faradic efficiencies (FE) of 80~90%. Particularly, SACs can exhibit FEs of CO higher than 90%. Metal oxides and graphene-based materials can produce HCOOH, but the FEs are generally lower than that of CO. Only Cu-based materials can produce high carbon products such as C2H4 but they have low product selectivity. It was proposed that the design and synthesis of novel 2D materials for ECR should be based on thorough understanding of the reaction mechanism through combined theoretical prediction with experimental study, especially in situ characterization techniques. The gap between laboratory synthesis and large-scale production of 2D materials also needs to be closed for commercial applications.
引用
收藏
页数:30
相关论文
共 165 条
[1]   Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide [J].
Abbasi, Pedram ;
Asadi, Mohammad ;
Liu, Cong ;
Sharifi-Asl, Soroosh ;
Sayahpour, Baharak ;
Behranginia, Amirhossein ;
Zapol, Peter ;
Shahbazian-Yassar, Reza ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
ACS NANO, 2017, 11 (01) :453-460
[2]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[3]   Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4 [J].
Ao, Chengcheng ;
Feng, Beibei ;
Qian, Siyu ;
Wang, Lei ;
Zhao, Wei ;
Zhai, Yitong ;
Zhang, Lidong .
JOURNAL OF CO2 UTILIZATION, 2020, 36 :116-123
[4]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[5]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[6]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[7]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[8]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[9]   Anthropogenic carbon and ocean pH [J].
Caldeira, K ;
Wickett, ME .
NATURE, 2003, 425 (6956) :365-365
[10]   Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction [J].
Chai, Guo-Liang ;
Guo, Zheng-Xiao .
CHEMICAL SCIENCE, 2016, 7 (02) :1268-1275