L∞-ESTIMATES OF MIXED FINITE ELEMENT METHODS FOR GENERAL NONLINEAR OPTIMAL CONTROL PROBLEMS

被引:0
作者
Chen, Yanping [1 ]
Lu, Zuliang [2 ,3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[3] Xiangtan Univ, Coll Civil Engn & Mech, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
L-infinity-error estimates; mixed finite element methods; nonlinear elliptic equations; optimal; control problems; pointwise control constraints; NUMERICAL APPROXIMATION; SUPERCONVERGENCE;
D O I
10.1007/s11424-011-9215-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates L-infinity-estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L-infinity-estirnates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 31 条
[1]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[2]  
Babuska I., 2001, NUMER MATH SCI COMP
[3]   Second-order analysis for control constrained optimal control problems of semilinear elliptic systems [J].
Bonnans, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (03) :303-325
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]   Error estimates for the numerical approximation of boundary semilinear elliptic control problems [J].
Casas, E ;
Mateos, M ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (02) :193-219
[7]   Superconvergence of mixed finite element methods for optimal control problems [J].
Chen, Yanping .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1269-1291
[8]  
Chen YP, 2006, INT J NUMER ANAL MOD, V3, P311
[9]   Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods [J].
Chen, Yanping ;
Lu, Zuliang .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (11) :957-965
[10]   Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem [J].
Chen, Yanping ;
Lu, Zuliang .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1415-1423