Brain age from the electroencephalogram of sleep

被引:75
|
作者
Sun, Haoqi [1 ]
Paixao, Luis [1 ]
Oliva, Jefferson T. [1 ,2 ]
Goparaju, Balaji [1 ]
Carvalho, Diego Z. [1 ]
van Leeuwen, Kicky G. [1 ,3 ]
Akeju, Oluwaseun [4 ]
Thomas, Robert J. [5 ]
Cash, Sydney S. [1 ]
Bianchi, Matt T. [1 ]
Westover, M. Brandon [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurol, 55 Fruit St, Boston, MA 02114 USA
[2] Univ Sao Paulo, Comp Sci Dept, Bioinspired Comp Lab, Sao Paulo, Brazil
[3] Univ Twente, Enschede, Netherlands
[4] Massachusetts Gen Hosp, Dept Anesthesiol Crit Care & Pain Med, Boston, MA 02114 USA
[5] Beth Israel Deaconess Med Ctr, Dept Med, Div Pulm Crit Care & Sleep, Boston, MA 02215 USA
关键词
Brain age; Sleep; EEG; Machine learning; HEALTH; DEMENTIA; RISK; EEG;
D O I
10.1016/j.neurobiolaging.2018.10.016
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These changes can be conceptualized as "brain age (BA)," which can be compared to chronological age to reflect the degree of deviation from normal aging. Here, we develop an interpretable machine learning model to predict BA based on 2 large sleep EEG data sets: the Massachusetts General Hospital (MGH) sleep lab data set (N = 2532; ages 18-80); and the Sleep Heart Health Study (SHHS, N = 1974; ages 40-80). The model obtains a mean absolute deviation of 7.6 years between BA and chronological age (CA) in healthy participants in the MGH data set. As validation, a subset of SHHS containing longitudinal EEGs 5.2 years apart shows an average of 5.4 years increase in BA. Participants with significant neurological or psychiatric disease exhibit a mean excess BA, or "brain age index" (BAI = BA-CA) of 4 years relative to healthy controls. Participants with hypertension and diabetes have a mean excess BA of 3.5 years. The findings raise the prospect of using the sleep EEG as a potential biomarker for healthy brain aging. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
  • [31] Sleep Quality and Electroencephalogram Delta Power
    Long, Siyu
    Ding, Rui
    Wang, Junce
    Yu, Yue
    Lu, Jing
    Yao, Dezhong
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [32] Effects of alcohol on sleep and the sleep electroencephalogram in healthy young women
    Van Reen, Eliza
    Jenni, Oskar G.
    Carskadon, Mary A.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2006, 30 (06) : 974 - 981
  • [33] Circadian gene variants influence sleep and the sleep electroencephalogram in humans
    Chang, Anne-Marie
    Bjonnes, Andrew C.
    Aeschbach, Daniel
    Buxton, Orfeu M.
    Gooley, Joshua J.
    Anderson, Clare
    Van Reen, Eliza
    Cain, Sean W.
    Czeisler, Charles A.
    Duffy, Jeanne F.
    Lockley, Steven W.
    Shea, Steven A.
    Scheer, Frank A. J. L.
    Saxena, Richa
    CHRONOBIOLOGY INTERNATIONAL, 2016, 33 (05) : 561 - 573
  • [34] How we sleep: From brain states to processes
    Andrillon, T.
    REVUE NEUROLOGIQUE, 2023, 179 (07) : 649 - 657
  • [35] Slow waves in the sleep electroencephalogram after daily torpor are homeostatically regulated
    Deboer, T
    Tobler, I
    NEUROREPORT, 2000, 11 (04) : 881 - 885
  • [36] Predicting Age From Brain EEG Signals-A Machine Learning Approach
    Al Zoubi, Obada
    Wong, Chung Ki
    Kuplicki, Rayus T.
    Yeh, Hung-wen
    Mayeli, Ahmad
    Refai, Hazem
    Paulus, Martin
    Bodurka, Jerzy
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [37] Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain
    Tsapanou, Angeliki
    Lee, Seonjoo
    Chapman, Silvia
    Mourtzi, Niki
    Habeck, Christian
    Stern, Yaakov
    GENES, 2025, 16 (01)
  • [38] Novel neuroelectrophysiological age index associated with imaging features of brain aging and sleep disorders
    Yook, Soonhyun
    Park, Hea Ree
    Park, Claire
    Park, Gilsoon
    Lim, Diane C.
    Kim, Jinyoung
    Joo, Eun Yeon
    Kim, Hosung
    NEUROIMAGE, 2022, 264
  • [39] Computing Hierarchical Complexity of the Brain from Electroencephalogram Signals: A Graph Convolutional Network-based Approach
    Wadhera, Tanu
    Mahmud, Mufti
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia
    Purdon, P. L.
    Pavone, K. J.
    Akeju, O.
    Smith, A. C.
    Sampson, A. L.
    Lee, J.
    Zhou, D. W.
    Solt, K.
    Brown, E. N.
    BRITISH JOURNAL OF ANAESTHESIA, 2015, 115 : 46 - 57