Einstein solvmanifolds with a simple Einstein derivation

被引:29
作者
Nikolayevsky, Yuri [1 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
关键词
Einstein solvmanifold; Einstein nilradical; filiform Lie algebra;
D O I
10.1007/s10711-008-9264-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structure of a solvable Lie group admitting an Einstein left-invariant metric is, in a sense, completely determined by the nilradical of its Lie algebra. We give an easy-to-check necessary and sufficient condition for a nilpotent algebra to be an Einstein nilradical whose Einstein derivation has simple eigenvalues. As an application, we classify filiform Einstein nilradicals (modulo known classification results on filiform graded Lie algebras).
引用
收藏
页码:87 / 102
页数:16
相关论文
共 22 条
[1]  
Alekseevskii DV., 1975, Izv. Akad. Nauk SSSR Ser. Mat, V39, P297
[2]  
Ancochea J.M., 1992, COMMUN ALGEBRA, V20, P875, DOI [10.1080/00927879208824380, DOI 10.1080/00927879208824380]
[3]  
CAIRNS G, 2005, SPECIAL FAMILY POSIT
[4]  
Dotti I., 1982, MATH Z, V180, P257
[5]   New homogeneous Einstein metrics of negative Ricci curvature [J].
Gordon, CS ;
Kerr, MM .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (01) :75-101
[6]   NILPOTENT ALGEBRAS ADMITTING A TORUS OF DERIVATIONS [J].
GOZE, M ;
HAKIMJANOV, Y .
MANUSCRIPTA MATHEMATICA, 1994, 84 (02) :115-224
[7]  
Goze M., 2000, Handbook of Algebra, V2, P615
[8]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352
[9]   Semistable points with respect to real forms [J].
Heinzner, Peter ;
Stoetzel, Henrik .
MATHEMATISCHE ANNALEN, 2007, 338 (01) :1-9
[10]   Finding Einstein solvmanifolds by a variational method [J].
Lauret, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (01) :83-99