Optimizing ligand conformations in flexible protein targets: a multi-objective strategy

被引:0
|
作者
Lopez-Camacho, Esteban [1 ]
Jesus Garcia-Godoy, Maria [1 ]
Garcia-Nieto, Jose [1 ]
Nebro, Antonio J. [1 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, ETSI Informat, Biomed Res Inst Malaga IBIMA, Inst Software Technol & Software Engn ITIS,Dept C, Campus Teatinos, Malaga 29071, Spain
关键词
Molecular docking; Multi-objective optimization; Metaheuristics; HIV-1; PROTEASE; MOLECULAR DOCKING; WILD-TYPE; INHIBITION; ALGORITHM; ACCURACY;
D O I
10.1007/s00500-019-04575-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding the orientation of a ligand (small molecule) with the lowest binding energy to the macromolecule (receptor) is a complex optimization problem, commonly called ligand-protein docking. This problem has been usually approached by minimizing a single objective that corresponds to the final free energy of binding. In this work, we propose a new multi-objective strategy focused on minimizing: (1) the root mean square deviation (RMSD) between the co-crystallized and predicted ligand atomic coordinates, and (2) the ligand-receptor intermolecular energy. This multi-objective strategy provides the molecular biologists with a range of solutions computing different RMSD scores and intermolecular energies. A set of representative multi-objective algorithms, namely NSGA-II, SMPSO, GDE3 and MOEA/D, have been evaluated in the scope of an extensive set of docking problems, which are featured by including HIV-proteases with flexible ARG8 side chains and their inhibitors. As use cases for biological validation, we have included a set of instances based on new retroviral inhibitors to HIV-proteases. The proposed multi-objective approach shows that the predictions of ligand's pose can be promising in cases in which studiesin silicoare necessary to test new candidate drugs (or analogue drugs) to a given therapeutic target.
引用
收藏
页码:10705 / 10719
页数:15
相关论文
共 50 条
  • [1] Optimizing ligand conformations in flexible protein targets: a multi-objective strategy
    Esteban López-Camacho
    María Jesús García-Godoy
    José García-Nieto
    Antonio J. Nebro
    José F. Aldana-Montes
    Soft Computing, 2020, 24 : 10705 - 10719
  • [2] Multi-objective evolution strategy for multimodal multi-objective optimization
    Zhang, Kai
    Chen, Minshi
    Xu, Xin
    Yen, Gary G.
    APPLIED SOFT COMPUTING, 2021, 101
  • [3] Multi-objective ligand-protein docking with particle swarm optimizers
    Garcia-Nieto, Jose
    Lopez-Camacho, Esteban
    Jesus Garcia-Godoy, Maria
    Nebro, Antonio J.
    Aldana-Montes, Jose F.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 439 - 452
  • [4] Multi-objective Optimization Strategy for Virtual Power Plant with Flexible Data Center
    Wang, Xuanyuan
    Liu, Zhen
    An, Qi
    Li, Gengyin
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 1265 - 1269
  • [5] A Survey on Modeling and Optimizing Multi-Objective Systems
    Cho, Jin-Hee
    Wang, Yating
    Chen, Ing-Ray
    Chan, Kevin S.
    Swami, Ananthram
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (03): : 1867 - 1901
  • [6] Optimizing Exhibition Spaces A Multi-Objective Approach
    Pereira, Ines
    Belem, Catarina
    Leitao, Antonio
    ECAADE SIGRADI 2019: ARCHITECTURE IN THE AGE OF THE 4TH INDUSTRIAL REVOLUTION, VOLUME 3, 2019, : 53 - 62
  • [7] Multi-objective Metaheuristics for a Flexible Ligand-Macromolecule Docking Problem in Computational Biology
    Lopez Camacho, Esteban
    Jesus Garcia-Godoy, Maria
    Del Ser, Javier
    Nebro, Antonio J.
    Aldana-Montes, Jose F.
    INTELLIGENT DISTRIBUTED COMPUTING XII, 2018, 798 : 369 - 379
  • [8] Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms
    Segura, Carlos
    Cervantes, Alejandro
    Nebro, Antonio J.
    Dolores Jaraiz-Simon, Maria
    Segredo, Eduardo
    Garcia, Sandra
    Luna, Francisco
    Antonio Gomez-Pulido, Juan
    Miranda, Gara
    Luque, Cristobal
    Alba, Enrique
    Angel Vega-Rodriguez, Miguel
    Leon, Coromoto
    Galvan, Ines M.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 305 - +
  • [9] Multi-objective Powertrain Operation Strategy
    Li, Jiao
    Huber, Thomas
    Beldl, Christian
    AUTOREG 2017: AUTOMATISIERTES FAHREN UND VERNETZTE MOBILITAT, 2017, 2292 : 185 - 212
  • [10] Multi-objective optimisation of the protein-ligand docking problem in drug discovery
    Oduguwa, A.
    Tiwari, A.
    Fiorentino, S.
    Roy, R.
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1793 - +