Binderless zeolite LTA beads with hierarchical porosity for selective CO2 adsorption in biogas upgrading

被引:19
作者
Boer, Dina G. [1 ,2 ]
Langerak, Jort [2 ]
Bakker, Benny [2 ]
Pescarmona, Paolo P. [1 ]
机构
[1] Univ Groningen, Engn & Technol Inst Groningen ENTEG, Fac Sci & Engn, Chem Engn Grp, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] DMT Environm Technol, Yndustrywei 3, NL-8501 SN Joure, Netherlands
关键词
Zeolite; Adsorption; CO2; Hierarchical porosity; Biogas upgrading; CARBON-DIOXIDE CAPTURE; TITANOSILICATE BEADS; MOLECULAR-SIEVES; HIGH-CAPACITY; SPHERES; CH4; EPOXIDATION; ADSORBENTS; SEPARATION; SORBENTS;
D O I
10.1016/j.micromeso.2022.112208
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In the context of CO2 removal from biogas, a series of binderless zeolite LTA adsorbents with a macroscopic bead format (0.5-1.0 mm) and with hierarchical porosity (i.e. with the zeolitic micropores being accessible through meso-and macropores mainly in the 10-100 nm range) was synthesized with a variety of Si/Al ratios (1.2-3.9) using Amberlite IRA-900 anion-exchange resin beads as a hard template. The CO2 and CH4 adsorption capacity of the beads in Na-form with different Si/Al ratios were measured, reaching higher CO2/CH4 selectivity and similar, yet slightly higher CO2 adsorption compared to commercial zeolite LTA pellets containing a binder. Subse-quently, one the zeolitic beads was subjected to different degrees of ion-exchange (0-96%) with KCl and then tested in the adsorption of CO2 and CH4. The best performance among all the ion-exchanged beads was achieved with Na58K42-LTA beads, which gave very high CO2/CH4 selectivity (1540). Although essentially no CH4 was adsorbed on these beads, the CO2 adsorption capacity was still substantial (1.9 mmol g-1 at 0.4 bar CO2, i.e. the partial pressure of CO2 in biogas).
引用
收藏
页数:11
相关论文
共 52 条
[11]   Synthesis of Binderless ZK-4 Zeolite Microspheres at High Temperature [J].
Fawaz, Elyssa G. ;
Salam, Darine A. ;
Nouali, Habiba ;
Deroche, Irena ;
Rigolet, Severinne ;
Lebeau, Benedicte ;
Daou, T. Jean .
MOLECULES, 2018, 23 (10)
[12]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+
[13]   Tailoring hierarchically structured SiO2 spheres for high pressure CO2 adsorption [J].
Hahn, Maximilian W. ;
Steib, Matthias ;
Jentys, Andreas ;
Lercher, Johannes A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) :13624-13634
[14]   Cost-effective CO2 capture based on in silico screening of zeolites and process optimization [J].
Hasan, M. M. Faruque ;
First, Eric L. ;
Floudas, Christodoulos A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (40) :17601-17618
[15]   Fast room temperature lability of aluminosilicate zeolites [J].
Heard, Christopher J. ;
Grajciar, Lukas ;
Rice, Cameron M. ;
Pugh, Suzi M. ;
Nachtigall, Petr ;
Ashbrook, Sharon E. ;
Morriss, Russell E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[16]  
Hopkins D., ZK 4
[17]  
Hoyer K., 2016, Biogas Upgrading - Technical Review, DOI DOI 10.1016/j.enconman.2017.08.035
[18]   Adsorption of small molecules in LTA zeolites.: 1.: NH3, CO2, and H2O in zeolite 4A [J].
Jaramillo, E ;
Chandross, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :20155-20159
[19]   Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO2 Capture [J].
Kizzie, Austin C. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
LANGMUIR, 2011, 27 (10) :6368-6373
[20]   An overview of current status of carbon dioxide capture and storage technologies [J].
Leung, Dennis Y. C. ;
Caramanna, Giorgio ;
Maroto-Valer, M. Mercedes .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 :426-443