AN EXTRAGRADIENT-LIKE PARALLEL METHOD FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND SEMIGROUP OF NONEXPANSIVE MAPPINGS

被引:1
作者
Thuy, L. Q. [1 ,2 ]
Wen, C-F [2 ,3 ,4 ]
Yao, J-C [5 ,6 ]
Hai, T. N. [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet Rd, Hanoi, Vietnam
[2] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[3] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
[4] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 80708, Taiwan
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[6] China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
关键词
equilibrium problems; fixed point problems; pseudomonotonicity; nonexpansive mappings; nonexpansive semigroup; parallel computation; COMMON FIXED-POINTS; VARIATIONAL-INEQUALITIES; WEAK-CONVERGENCE; ITERATIVE METHOD; ALGORITHMS; FAMILIES;
D O I
10.18514/MMN.2018.2114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a parallel iterative hybrid methods for finding a common element of the solution sets of a finite family of pseudomonotone equilibrium problems and the fixed points set of a semigroup-nonexpensive mappings in Hilbert spaces. Under mild conditions, we obtain the strong convergence of the proposed iterative process. Some numerical experiments are given to verify the efficiency the proposed algorithm.
引用
收藏
页码:1185 / 1201
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1990, Topics in metric fixed point theory
[2]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[3]  
Blum E., 1994, MATH STUD, V63, P127
[5]  
Buong Ng, 2011, J APPL MATH INFORM, V20, P61
[6]  
Chang S., 2012, FIXED POINT THEORY A, V1, P1
[7]  
Combettes P. L., 1996, ADV IMAGING ELECT PH
[8]   Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings [J].
Dang Van Hieu ;
Le Dung Muu ;
Pham Ky Anh .
NUMERICAL ALGORITHMS, 2016, 73 (01) :197-217
[9]  
Daniele P., 2003, Equilibrium problems and variational models
[10]  
Flam SD, 1997, MATH PROGRAM, V78, P29