An insight into the general relationship between the three dimensional structures of enzymes and their electronic wave functions: Implication for the prediction of functional sites of enzymes

被引:20
作者
Fukushima, K. [1 ]
Wada, M. [2 ]
Sakurai, M. [1 ]
机构
[1] Tokyo Inst Technol, Ctr Biol Resources & Informat, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] Fujitsu Ltd, BiolT Business Dev Grp, Chiba 2618588, Japan
关键词
enzyme; structural genomics; molecular orbital; hydration; catalytic residues; wave functions of enzymes;
D O I
10.1002/prot.21865
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we explored the general relationship between the three-dimensional (3D) structures of enzymes and their electronic wave functions. Furthermore, we developed a method for the prediction of their functionally important sites. For this purpose, we first performed linear-scaling molecular orbital calculations for 112 nonredundant, non-homologous enzymes with known structure and function. In consequence, we showed that the canonical molecular orbitals (MOs) of the enzymes could be classified into three groups according to the degree of electron delocalization: highly localized orbitals (Group A), highly delocalized orbitals whose electrons are distributed over almost the whole molecule (Group B), and moderately delocalized orbitals (Group Q. The MOs belonging to Group A are located near the HOMO-LUMO band gap, and thereby include the frontier orbitals of a given enzyme. We inferred that the MOs of Group B play a role in stabilizing the 3D structure of the enzyme, while those of Group C contribute to constructing the covalent bond framework of the enzyme. Next, we investigated whether the frontier orbitals of enzymes could be used for identifying their potential functional sites. As a result, we found that the frontier orbitals of the 112 enzymes have a high propensity to be colocalized with the known functional sites, especially when the enzymes are hydrated. Such a propensity is shown to be remarkable when Glu or Asp is a functional site residue. On the basis of these results, we finally propose a protocol for the prediction of functional sites of enzymes.
引用
收藏
页码:1940 / 1954
页数:15
相关论文
共 55 条
[1]   Network analysis of protein structures identifies functional residues [J].
Amitai, G ;
Shemesh, A ;
Sitbon, E ;
Shklar, M ;
Netanely, D ;
Venger, I ;
Pietrokovski, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (04) :1135-1146
[2]   Analysis of catalytic residues in enzyme active sites [J].
Bartlett, GJ ;
Porter, CT ;
Borkakoti, N ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (01) :105-121
[3]   Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods [J].
Bate, P ;
Warwicker, J .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (02) :263-276
[4]   Looking at enzymes from the inside out: The proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces [J].
Ben-Shimon, A ;
Eisenstein, M .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 351 (02) :309-326
[5]   Fast prediction and visualization of protein binding pockets with PASS [J].
Brady, GP ;
Stouten, PFW .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2000, 14 (04) :383-401
[6]   Structural genomics: beyond the Human Genome Project [J].
Burley, SK ;
Almo, SC ;
Bonanno, JB ;
Capel, M ;
Chance, MR ;
Gaasterland, T ;
Lin, DW ;
Sali, A ;
Studier, FW ;
Swaminathan, S .
NATURE GENETICS, 1999, 23 (02) :151-157
[7]   Structural genomics of proteins from conserved biochemical pathways and processes [J].
Burley, SK ;
Bonanno, JB .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (03) :383-391
[8]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[9]   Computational prediction of native protein ligand-binding and enzyme active site sequences [J].
Chakrabarti, R ;
Klibanov, AM ;
Friesner, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10153-10158
[10]   The impact of structural genomics: Expectations and outcomes [J].
Chandonia, JM ;
Brenner, SE .
SCIENCE, 2006, 311 (5759) :347-351