Rational values of the Riemann zeta function

被引:23
作者
Masser, D. [1 ]
机构
[1] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
关键词
Zeta function; Irrationality; Counting; NUMBER; POINTS;
D O I
10.1016/j.jnt.2011.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a constant C such that for any D >= 3 there are at most C (log D/log log D)(2) rational numbers s with 2 < s < 3 and denominator at most D such that s) is also rational with denominator at most D. This is done by combining elements of the works of Bombieri-Pila, Pila, and Surroca with a new zero estimate. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2037 / 2046
页数:10
相关论文
共 17 条
  • [1] [Anonymous], 1979, Asterisque
  • [2] Ball K, 2001, INVENT MATH, V146, P193, DOI 10.1007/s002220100168
  • [3] BOHR H., 1913, B ACAD ROY BELG S, V12, P1144
  • [4] THE NUMBER OF INTEGRAL POINTS ON ARCS AND OVALS
    BOMBIERI, E
    PILA, J
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) : 337 - 357
  • [5] Bombieri E., 2006, NEW MATH MONOGR, V4
  • [6] Complexity of computations with Pfaffian and Noetherian functions
    Gabrielov, A
    Vorobjov, N
    [J]. NORMAL FORMS, BIFURCATIONS AND FINITENESS PROBLEMS IN DIFFERENTIAL EQUATIONS, 2004, 137 : 211 - 250
  • [7] ALGEBRAIC VALUES OF ANALYTICAL FUNCTIONS
    GRAMAIN, F
    MIGNOTTE, M
    WALDSCHMIDT, M
    [J]. ACTA ARITHMETICA, 1986, 47 (02) : 97 - 121
  • [8] LANG S, 1973, REAL ANAL
  • [9] Littlewood J.E., 1982, COLLECT WORKS, VII, P797
  • [10] Loher T, 2001, THESIS BASEL