Convergence in distribution of point processes on Polish spaces to a simple limit

被引:0
|
作者
Peterson, Lisa D. [1 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
Convergence in distribution; Point processes; Simple point processes; Polish spaces;
D O I
10.1016/j.spl.2011.07.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let xi, xi(1), xi(2), ... be a sequence of point processes on a complete and separable metric space (S, d) with xi simple. We assume that P{xi(n)B = 0} -> P{xi B = 0} and lim sup(n ->infinity) P{xi(n)B > 1} <= P{xi B > 1} for all B in some suitable class 2, and show that this assumption determines if the sequence {xi(n)} converges in distribution to xi. This is an extension to general Polish spaces of the weak convergence theory for point processes on locally compact Polish spaces found in Kallenberg (1996). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1859 / 1861
页数:3
相关论文
共 50 条