Predicting renal graft failure using multivariate longitudinal profiles

被引:45
作者
Fieuws, Steffen [1 ]
Verbeke, Geert [1 ]
Maes, Bart [2 ]
Vanrenterghem, Yves [3 ]
机构
[1] Katholieke Univ Leuven, Ctr Biostat, Louvain, Belgium
[2] H Hartziekenhuis, Dept Nephrol, Roeselare Menen, Belgium
[3] Univ Hosp Gasthuisberg, Dept Nephrol, B-3000 Louvain, Belgium
关键词
discriminant analysis; high dimensional; joint modeling; longitudinal profiles; multivariate mixed models;
D O I
10.1093/biostatistics/kxm041
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients who have undergone renal transplantation are monitored longitudinally at irregular time intervals over 10 years or more. This yields a set of biochemical and physiological markers containing valuable information to anticipate a failure of the graft. A general linear, generalized linear, or nonlinear mixed model is used to describe the longitudinal profile of each marker. To account for the correlation between markers, the univariate mixed models are combined into a multivariate mixed model (MMM) by specifying a joint distribution for the random effects. Due to the high number of markers, a pairwise modeling strategy, where all possible pairs of bivariate mixed models are fitted, is used to obtain parameter estimates for the MMM. These estimates are used in a Bayes rule to obtain, at each point in time, the prognosis for long-term success of the transplant. It is shown that allowing the markers to be correlated can improve this prognosis.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 33 条
  • [1] [Anonymous], P JOINT STAT M BIOM
  • [2] MCMC estimation and some model-fit analysis of multidimensional IRT models
    Béguin, AA
    Glas, CAW
    [J]. PSYCHOMETRIKA, 2001, 66 (04) : 541 - 561
  • [3] Data from a longitudinal study provided measurements of cognition to screen for Alzheimer's disease
    Brant, LJ
    Sheng, SL
    Morrell, CH
    Zonderman, AB
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2005, 58 (07) : 701 - 707
  • [4] Screening for prostate cancer by using random-effects models
    Brant, LJ
    Sheng, SL
    Morrell, CH
    Verbeke, GN
    Lesaffre, E
    Carter, HB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2003, 166 : 51 - 62
  • [5] Joint models for multivariate longitudinal and multivariate survival data
    Chi, Yueh-Yun
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2006, 62 (02) : 432 - 445
  • [6] Predicting kidney graft failure using time-dependent renal function covariates
    de Bruijne, MHJ
    Sijpkens, YWJ
    Paul, LC
    Westendorp, RGJ
    van Houwelingen, HC
    Zwinderman, AH
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (05) : 448 - 455
  • [7] Faucett CL, 1996, STAT MED, V15, P1663, DOI 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO
  • [8] 2-1
  • [9] Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles
    Fieuws, S
    Verbeke, G
    [J]. BIOMETRICS, 2006, 62 (02) : 424 - 431
  • [10] Fieuws S., 2006, APPL STAT, V55, P1