Benefit Analysis of Precursor Emission Reduction on PM2.5: Using CMAQ-RSM to Evaluate Control Strategies in Different Seasons

被引:5
作者
Chen, Chih-Rung [1 ]
Lai, Hsin-Chih [2 ,3 ]
Hsiao, Min-Chuan [3 ]
Ma, Hwong-wen [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Environm Engn, Taipei 10673, Taiwan
[2] Chang Jung Christian Univ, Dept Green Energy & Environm Resources, Tainan 71101, Taiwan
[3] Chang Jung Christian Univ, Environm Res & Informat Ctr, Tainan 71101, Taiwan
关键词
Fine particulate matter; Air quality management; Emission reduction; Response model; CHEMICAL-CHARACTERIZATION; SOURCE APPORTIONMENT; PARTICULATE MATTER; MODEL; POLLUTION; ATTAINMENT; MEGACITY; DESIGN; REGION; URBAN;
D O I
10.4209/aaqr.210381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
PM2.5 pollution has been a major problem that threatens the environment and human health. To implement more effective management of this problem, the sensitivity of ambient PM2.5 reduction to precursors needs to be clarified. In this study, a mature air quality model was used to simulate the contribution of precursors emission reduction to decreased PM2.5 concentration. To evaluate the benefits of emission reduction on PM2.5 and the changes in different seasons and regions, we used CMAQ to establish the Response Surface Model (RSM) and set an emission reduction scenario based on 2013 to reduce emissions by 10-100% for each species. The RSM model was used to calculate the decreased concentration of PM(2.5 )under the reduction of primary PM2.5, NOx, SOx, and NH3 emissions, and then to estimate the impact of emission reduction on PM2.5 concentration per ton of precursor. The primary PM2.5 emission reduction benefits ranged from 9.43-9.79 x 10(-5 )mu g m(-3) t(-1), NOx from 8.12-8.84 x 10(-6) mu g m(-3) t(-1), SOx from 6.15-7.45 x 10(-6) mu g m(-3) t(-1) and NH3 from 1.78-1.83 x 10(-6) mu g m(-3) t(-1). The reduction benefit of primary PM2.s was more than 11 times that of NOx, whereas the reduction benefit of NH3 was more than twice that of NOx and SOx. The simulation results show that PM2.5 concentration is highly sensitive to primary PM(2.5 )and NH3, and the reduction benefit of NH3 is superior to that of NOx and SOx. Through RSM calculation, the temporal and spatial variation of emission reduction benefits can be obtained, which is helpful to formulate flexible control strategies for different pollutants in different seasons.
引用
收藏
页数:14
相关论文
共 41 条
[1]   Development of a response surface model of aviation's air quality impacts in the United States [J].
Ashok, Akshay ;
Lee, In Hwan ;
Arunachalam, Saravanan ;
Waitz, Ian A. ;
Yim, Steve H. L. ;
Barrett, Steven R. H. .
ATMOSPHERIC ENVIRONMENT, 2013, 77 :445-452
[2]  
Baig S., 2017, J Earth Sci Clim Change, DOI [10.4172/2157-7617.1000404, DOI 10.4172/2157-7617.1000404]
[3]   Are noise and air pollution related to the incidence of dementia? A cohort study in London, England [J].
Carey, Iain M. ;
Anderson, H. Ross ;
Atkinson, Richard W. ;
Beevers, Sean D. ;
Cook, Derek G. ;
Strachan, David P. ;
Dajnak, David ;
Gulliver, John ;
Kelly, Frank J. .
BMJ OPEN, 2018, 8 (09)
[4]   Health risk assessment of trace elements of ambient PM2.5 under monsoon patterns [J].
Chen, Chih-Rung ;
Lai, Hsin-Chih ;
Liao, Meng-, I ;
Hsiao, Min-Chuan ;
Ma, Hwong-wen .
CHEMOSPHERE, 2021, 264
[5]   Simulation and analysis of causes of a haze episode by combining CMAQ-IPR and brute force source sensitivity method [J].
Chen, Tu-Fu ;
Chang, Ken-Hui ;
Lee, Chiu-Hsuan .
ATMOSPHERIC ENVIRONMENT, 2019, 218
[6]   Modeling approach for emissions reduction of primary PM2.5 and secondary PM2.5 precursors to achieve the air quality target [J].
Chen, Tu-Fu ;
Chang, Ken-Hui ;
Tsai, Chang-You .
ATMOSPHERIC RESEARCH, 2017, 192 :11-18
[7]   Humidity plays an important role in the PM2.5 pollution in Beijing [J].
Cheng, Yuan ;
He, Ke-bin ;
Du, Zhen-yu ;
Zheng, Mei ;
Duan, Feng-kui ;
Ma, Yong-liang .
ENVIRONMENTAL POLLUTION, 2015, 197 :68-75
[8]   Ambient PM2.5 caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation [J].
Chu, Chen ;
Zhang, Haiya ;
Cui, Shijie ;
Han, Bin ;
Zhou, Lixiao ;
Zhang, Ning ;
Su, Xuan ;
Niu, Yujie ;
Chen, Wen ;
Chen, Rui ;
Zhang, Rong ;
Zheng, Yuxin .
JOURNAL OF HAZARDOUS MATERIALS, 2019, 369 :180-190
[9]   Particulate matter at a rural location in southern England during 2006: Model sensitivities to precursor emissions [J].
Derwent, Richard ;
Witham, Claire ;
Redington, Alison ;
Jenkin, Michael ;
Stedman, John ;
Yardley, Rachel ;
Hayman, Garry .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (03) :689-696
[10]   Application of a health index using PM2.5 concentration reductions for evaluating cross-administrative region air quality policies [J].
Hsiao, Min-Chuan ;
Lin, Wen-Yinn ;
Lai, Li-Wei ;
Lai, Hsin-Chih .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2021, 71 (08) :949-963