Superlinear convergence of asynchronous multi-splitting waveform relaxation methods applied to a system of nonlinear ordinary differential equations

被引:0
|
作者
El-Kyal, M. [1 ,2 ]
Machmoum, A. [1 ,2 ]
机构
[1] Univ Ibn Zohr, ENSA, LIP2E, Agadir, Morocco
[2] Univ Ibn Zohr, Fac Sci, LAMA, Agadir, Morocco
关键词
numerical analysis; waveform relaxation methods; multi-splitting; asynchronous algorithms;
D O I
10.1016/j.matcom.2007.08.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We prove the superlinear convergence of asynchronous multi-splitting waveform relaxation (MSWR) methods applied to a system of nonlinear ordinary differential equations. This study is based on the technique of nested sets. It allows to specify the class of the convergence. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 23 条
  • [21] CONVERGENCE OF MULTI-REVOLUTION COMPOSITION TIME-SPLITTING METHODS FOR HIGHLY OSCILLATORY DIFFERENTIAL EQUATIONS OF SCHRODINGER TYPE
    Chartier, Philippe
    Mehats, Florian
    Thalhammer, Mechthild
    Zhang, Yong
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (05): : 1859 - 1882
  • [22] A Self-Adjoint Coupled System of Nonlinear Ordinary Differential Equations with Nonlocal Multi-Point Boundary Conditions on an Arbitrary Domain
    Srivastava, Hari Mohan
    Ntouyas, Sotiris K.
    Alsulami, Mona
    Alsaedi, Ahmed
    Ahmad, Bashir
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [23] Existence Theory For A Self-Adjoint Coupled System Of Nonlinear Ordinary Differential Equations With Nonlocal Integral Multi-Point Boundary Conditions
    Alsaedi, Ahmed
    Almalki, Amal
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 496 - 508