Microstructure and tensile properties of nano-sized ZrC particle strengthened RAFM steels

被引:8
作者
Wang, Hui [1 ,2 ]
Wang, Gaixia [2 ]
Wang, Fu [3 ]
An, Xuguang [1 ]
Chang, Yongqin [4 ]
机构
[1] Chengdu Univ, Inst Adv Study, Interdisciplinary Mat Res Ctr, Chengdu 610106, Sichuan, Peoples R China
[2] Nucl Power Inst China, Sci & Technol Reactor Fuel & Mat Lab, Chengdu 610041, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Mat & Chem, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 859卷
基金
中国国家自然科学基金;
关键词
RAFM steel; ZrC; Strengthening mechanism; Tensile properties; Spark plasma sintering; FERRITIC-MARTENSITIC STEELS; ALLOYS; Y2O3; TI; TEMPERATURE; DISPERSION; FISSION;
D O I
10.1016/j.msea.2022.144241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reduced activation ferritic/martensitic (RAFM) steels containing ZrC nano particles (ZrC-RAFM steels) were prepared by a combination of spark plasma sintering (SPS) and hot-rolling of the mechanical alloyed powders. Moreover, the microstructure and tensile properties of the prepared ZrC-RAFM steels were investigated. The results show that the ZrC nano particles are uniformly dispersed in the RAFM steels, resulting in a significant decrease in grain size and the enhanced tensile properties of the steels. With the increase of ZrC content, the hardness and tensile strength of the steels are improved, and the mechanism of the improved properties is analyzed and discussed. The tensile strength of the 0.75ZrC-RAFM steel is 2069 MPa, which is 19.6% higher than that (1730 MPa) of the RAFM steel without ZrC. The conclusions provide researchers with the roles of ZrC-nanoparticle in micromorphology and tensile properties of the RAFM steel as potential cladding materials for fast reactors.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Generalized perturbation techniques for uncertainty quantification in lead-cooled fast reactors [J].
Abrate, Nicolo ;
Dulla, Sandra ;
Ravetto, Piero .
ANNALS OF NUCLEAR ENERGY, 2021, 164
[2]   Ferritic-martensitic steels for fission and fusion applications [J].
Cabet, C. ;
Dalle, E. ;
Gaganidze, E. ;
Henry, J. ;
Tanigawa, H. .
JOURNAL OF NUCLEAR MATERIALS, 2019, 523 :510-537
[3]   Microstructural evolution of Y2O3 and MgAl2O4ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing [J].
Cayron, C ;
Rath, E ;
Chu, I ;
Launois, S .
JOURNAL OF NUCLEAR MATERIALS, 2004, 335 (01) :83-102
[4]  
Centeno-Perez J., 2022, CASE STUD THERM ENG, V30, DOI [10.1016/j.csite.2021., DOI 10.1016/J.CSITE.2021]
[5]   Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97:: process and optimisation [J].
de Castro, V ;
Leguey, T ;
Monge, MA ;
Muñoz, A ;
Pareja, R ;
Amador, DR ;
Torralba, JM ;
Victoria, M .
JOURNAL OF NUCLEAR MATERIALS, 2003, 322 (2-3) :228-234
[6]   Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys [J].
de Castro, V. ;
Leguey, T. ;
Munoz, A. ;
Monge, M. A. ;
Pareja, R. ;
Marquis, E. A. ;
Lozano-Perez, S. ;
Jenkins, M. L. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :449-452
[7]   First Principles Study on the Dissolution Corrosion Behavior of RAFM Steel in the Liquid PbLi [J].
Ding, Wenyi ;
Zhang, Min ;
Jiang, Zhizhong ;
Zheng, Mingjie ;
Huang, Wangli .
JOURNAL OF NUCLEAR MATERIALS, 2022, 563
[8]   Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR) [J].
Dong, Zhengyang ;
Qiu, Hanrui ;
Wang, Mingjun ;
Tian, Wenxi ;
Qiu, Suizheng ;
Su, G. H. .
ANNALS OF NUCLEAR ENERGY, 2022, 174
[9]   Microstructure and precipitation behavior of advanced RAFM steels for high-temperature applications on fusion reactors [J].
Fernandez, P. ;
Hoffmann, J. ;
Rieth, M. ;
Gomez-Herrero, A. .
MATERIALS CHARACTERIZATION, 2021, 180
[10]   Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure [J].
Garner, FA ;
Toloczko, MB ;
Sencer, BH .
JOURNAL OF NUCLEAR MATERIALS, 2000, 276 (01) :123-142