Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation

被引:24
|
作者
Chen, Tao [1 ]
Wang, Shui-Hua [2 ]
Wang, Qiong [1 ]
Zhang, Zheng [3 ,4 ]
Xie, Guo-Sen [1 ]
Tang, Zhenmin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Leicester, Sch Math & Actuarial Sci, Leicester LE1 7RH, Leics, England
[3] Harbin Inst Technol, ShenzhenKey Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial learning; Domain adaptation; pseudo label; semantic segmentation; NETWORK;
D O I
10.1109/TMM.2021.3106095
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation for semantic segmentation aims to transfer knowledge from a labeled source domain to another unlabeled target domain. However, due to the label noise and domain mismatch, learning directly from source domain data tends to have poor performance. Though adversarial learning methods strive to reduce domain discrepancies by aligning feature distributions, traditional methods suffer from the training imbalance and feature distortion problems. Besides, due to the absence of target domain labels, the classifier is blind to features from the target domain during training. Consequently, the final classifier overfits the source domain features and usually fails to predict the structured outputs of the target domain. To alleviate these problems, we focus on enhancing the adversarial learning based feature alignment from three perspectives. First, a classification constrained discriminator is proposed to balance the adversarial training and alleviate the feature distortion problem. Next, to alleviate the classifier overfitting problem, self-training is collaboratively used to learn a domain robust classifier with target domain pseudo labels. Moreover, an efficient class centroid calculation module is proposed and the domain discrepancy is further reduced by aligning the feature centroids of the same class from different domains. Experimental evaluations on GTA5 -> Cityscapes and SYNTHIA -> Cityscapes demonstrate state-of-the-art results compared to other counterpart methods. The source code and models have been made available at.(1)
引用
收藏
页码:1042 / 1054
页数:13
相关论文
共 50 条
  • [41] Self-supervision based Semantic Alignment for Unsupervised Domain Adaptation
    Zhu, Ronghang
    Li, Sheng
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 1 - 9
  • [42] Multi-Partition Feature Alignment Network for Unsupervised Domain Adaptation
    Sukhija, Sanatan
    Varadarajan, Srenivas
    Krishnan, Narayanan C.
    Rai, Sujit
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [43] Informative Class-Conditioned Feature Alignment for Unsupervised Domain Adaptation
    Deng, Wanxia
    Cui, Yawen
    Liu, Zhen
    Kuang, Gangyao
    Hu, Dewen
    Pietikainen, Matti
    Liu, Li
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1303 - 1312
  • [44] A multi-grained unsupervised domain adaptation approach for semantic segmentation
    Li, Luyang
    Ma, Tai
    Lu, Yue
    Li, Qingli
    He, Lianghua
    Wen, Ying
    PATTERN RECOGNITION, 2023, 144
  • [45] Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation
    Felipe Barbosa
    Fernando Osório
    Journal of Intelligent & Robotic Systems, 111 (1)
  • [46] Per-class curriculum for Unsupervised Domain Adaptation in semantic segmentation
    Alcover-Couso, Roberto
    Sanmiguel, Juan C.
    Escudero-Vinolo, Marcos
    Carballeira, Pablo
    VISUAL COMPUTER, 2025, 41 (02): : 901 - 919
  • [47] Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1357 - 1367
  • [48] Unsupervised Domain Adaptation via Shared Content Representation for Semantic Segmentation
    Hubschneider, Christian
    Birkenbach, Marius
    Zoellner, J. Marius
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3102 - 3109
  • [49] Source Data-Free Unsupervised Domain Adaptation for Semantic Segmentation
    Ye, Mucong
    Zhang, Jing
    Ouyang, Jingpeng
    Yuan, Ding
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2233 - 2242
  • [50] DaDA: Distortion-aware Domain Adaptation for Unsupervised Semantic Segmentation
    Jang, Sujin
    Na, Joohan
    Oh, Dokwan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,