Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation

被引:24
|
作者
Chen, Tao [1 ]
Wang, Shui-Hua [2 ]
Wang, Qiong [1 ]
Zhang, Zheng [3 ,4 ]
Xie, Guo-Sen [1 ]
Tang, Zhenmin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Leicester, Sch Math & Actuarial Sci, Leicester LE1 7RH, Leics, England
[3] Harbin Inst Technol, ShenzhenKey Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial learning; Domain adaptation; pseudo label; semantic segmentation; NETWORK;
D O I
10.1109/TMM.2021.3106095
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation for semantic segmentation aims to transfer knowledge from a labeled source domain to another unlabeled target domain. However, due to the label noise and domain mismatch, learning directly from source domain data tends to have poor performance. Though adversarial learning methods strive to reduce domain discrepancies by aligning feature distributions, traditional methods suffer from the training imbalance and feature distortion problems. Besides, due to the absence of target domain labels, the classifier is blind to features from the target domain during training. Consequently, the final classifier overfits the source domain features and usually fails to predict the structured outputs of the target domain. To alleviate these problems, we focus on enhancing the adversarial learning based feature alignment from three perspectives. First, a classification constrained discriminator is proposed to balance the adversarial training and alleviate the feature distortion problem. Next, to alleviate the classifier overfitting problem, self-training is collaboratively used to learn a domain robust classifier with target domain pseudo labels. Moreover, an efficient class centroid calculation module is proposed and the domain discrepancy is further reduced by aligning the feature centroids of the same class from different domains. Experimental evaluations on GTA5 -> Cityscapes and SYNTHIA -> Cityscapes demonstrate state-of-the-art results compared to other counterpart methods. The source code and models have been made available at.(1)
引用
收藏
页码:1042 / 1054
页数:13
相关论文
共 50 条
  • [21] SEFANet: Semantic enhanced with feature alignment network for semantic segmentation
    Wang, Dakai
    An, Wenhao
    Ma, Jianxin
    Wang, Li
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [22] Benchmarking domain adaptation for semantic segmentation
    Ahmed, Masud
    Hasan, Zahid
    Khan, Naima
    Roy, Nirmalya
    Purushotham, Sanjay
    Gangopadhyay, Aryya
    You, Suya
    UNMANNED SYSTEMS TECHNOLOGY XXIV, 2022, 12124
  • [23] Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
    Deng, Wanxia
    Liao, Qing
    Zhao, Lingjun
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7842 - 7855
  • [24] Unsupervised Domain Adaptation for Semantic Segmentation with Global and Local Consistency
    Shan, Xiangxuan
    Yin, Zijin
    Gao, Jiayi
    Liang, Kongming
    Ma, Zhanyu
    Guo, Jun
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 154 - 165
  • [25] Unsupervised Domain Adaptation with Implicit Pseudo Supervision for Semantic Segmentation
    Xu, Wanyu
    Wang, Zengmao
    Bian, Wei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [26] Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer
    Li, Weitao
    Gao, Hui
    Su, Yi
    Momanyi, Biffon Manyura
    REMOTE SENSING, 2022, 14 (19)
  • [27] Unsupervised domain adaptation based on feature and edge alignment for femur X-ray image segmentation
    Jiang, Xiaoming
    Yang, Yongxin
    Su, Tong
    Xiao, Kai
    Lu, LiDan
    Wang, Wei
    Guo, Changsong
    Shao, Lizhi
    Wang, Mingjing
    Jiang, Dong
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 116
  • [28] CFEA: Collaborative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised Optic Disc and Cup Segmentation
    Liu, Peng
    Kong, Bin
    Li, Zhongyu
    Zhang, Shaoting
    Fang, Ruogu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT V, 2019, 11768 : 521 - 529
  • [29] Distinguishing foreground and background alignment for unsupervised domain adaptative semantic segmentation
    Zhang, Jia
    Li, Wei
    Li, Zhixin
    IMAGE AND VISION COMPUTING, 2022, 124
  • [30] Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning
    Liu, Wei
    Luo, Zhiming
    Cai, Yuanzheng
    Yu, Ying
    Ke, Yang
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 : 211 - 221