Exponential Decay for the Schrodinger Equation on a Dissipative Waveguide

被引:9
|
作者
Royer, Julien [1 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 09, France
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 08期
关键词
LOCAL ENERGY DECAY; STABILIZATION;
D O I
10.1007/s00023-014-0361-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove exponential decay for the solution of the Schrodinger equation on a dissipative waveguide. The absorption is effective everywhere on the boundary, but the geometric control condition is not satisfied. The proof relies on separation of variables and the Riesz basis property for the eigenfunctions of the transverse operator. The case where the absorption index takes negative values is also discussed.
引用
收藏
页码:1807 / 1836
页数:30
相关论文
共 50 条
  • [1] Exponential decay for the cubic Schrödinger equation on a dissipative waveguide
    Malloug, Mohamed
    APPLICABLE ANALYSIS, 2024, 103 (15) : 2759 - 2776
  • [2] A NOTE ON THE EXPONENTIAL DECAY FOR THE NONLINEAR SCHRODINGER EQUATION
    Natali, Fabio
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (03) : 717 - 729
  • [3] Exponential decay estimates for the damped defocusing Schrodinger equation in exterior domains
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Cavalcanti, Valeria Neves Domingos
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (10)
  • [4] LOCAL ENERGY DECAY AND SMOOTHING EFFECT FOR THE DAMPED SCHRODINGER EQUATION
    Khenissi, Moez
    Royer, Julien
    ANALYSIS & PDE, 2017, 10 (06): : 1285 - 1315
  • [5] Polynomial decay rate for the dissipative wave equation
    Phung, Kim Dang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 240 (01) : 92 - 124
  • [6] Exponential Stability of a Schrodinger Equation Through Boundary Coupling a Wave Equation
    Wang, Jun-Min
    Wang, Fei
    Liu, Xiang-Dong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (07) : 3136 - 3142
  • [7] Exponential stability for the nonlinear Schrodinger equation with locally distributed damping
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Ozsari, Turker
    Sepulveda, Mauricio
    Vejar-Aseme, Rodrigo
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1134 - 1167
  • [8] Uniform Exponential Stability for a Schrodinger Equation and Its Semidiscrete Approximation
    Guo, Bao-Zhu
    Zheng, Fu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8900 - 8907
  • [9] Exponential decay in a delayed wave equation with variable coefficients
    Al-Khulaifi, Waled
    Alotibi, Manal
    Tatar, Nasser-Eddine
    AIMS MATHEMATICS, 2024, 9 (10): : 27770 - 27783
  • [10] Exponential decay for the damped wave equation in unbounded domains
    Burq, Nicolas
    Joly, Romain
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (06)