Even and Odd Schro Dinger Cat States in the Probability Representation of Quantum Mechanics

被引:4
作者
Adam, Peter [1 ,2 ]
Man'ko, Margarita A. [3 ]
Man'ko, Vladimir, I [3 ,4 ]
机构
[1] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Univ Pecs, Inst Phys, Ifjusag Utja 6, H-7624 Pecs, Hungary
[3] Russian Acad Sci, Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[4] Moscow Inst Phys & Technol, Inst Skii 9, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
probability representation; even and odd coherent states; optical tomogram; symplectic tomogram; entangled probability distributions of several random variables; COHERENT STATES; WIGNER FUNCTIONS; STATISTICAL PROPERTIES; SQUEEZED STATES; QUDIT STATES; STAR-PRODUCT; TOMOGRAPHY; GENERATION; CAVITY; ATOM;
D O I
10.1007/s10946-022-10030-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider even and odd coherent states (Schrodinger cat states) in the probability representation of quantum mechanics. The probability representation of the cat states is explicitly given using the formalism of quantizer and dequantizer operators, that provides the existence of an invertible map of operators acting in a Hilbert space onto functions called symbols of the operators. We employ a special set of quantizers and dequantizers to construct Wigner functions of the Schrodinger cat states and obtain the relation of the Wigner functions and the probability distributions by means of the Radon integral transform. The notion of entangled classical probability distributions is introduced in probability theory.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 87 条
[1]   Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems [J].
Adam, P. ;
Andreev, V. A. ;
Isar, A. ;
Man'ko, M. A. ;
Man'ko, V. I. .
PHYSICS LETTERS A, 2017, 381 (34) :2778-2782
[2]   STAR PRODUCT, DISCRETE WIGNER FUNCTIONS, AND SPIN-SYSTEM TOMOGRAMS [J].
Adam, P. ;
Andreev, V. A. ;
Isar, A. ;
Man'ko, V. I. ;
Man'ko, M. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (03) :346-364
[3]   Construction of quantum states by special superpositions of coherent states [J].
Adam, P. ;
Molnar, E. ;
Mogyorosi, G. ;
Varga, A. ;
Mechler, M. ;
Janszky, J. .
PHYSICA SCRIPTA, 2015, 90 (07)
[4]   COMPLETE BASIS-SET VIA STRAIGHT-LINE COHERENT-STATE SUPERPOSITIONS [J].
ADAM, P ;
FOLDESI, I ;
JANSZKY, J .
PHYSICAL REVIEW A, 1994, 49 (02) :1281-1287
[5]   Double self-Kerr scheme for optical Schrodinger-cat state preparation [J].
Adam, P. ;
Darazs, Z. ;
Kiss, T. ;
Mechler, M. .
PHYSICA SCRIPTA, 2011, T143
[6]   Conditional generation of optical Schrodinger cat states [J].
Adam, P. ;
Kiss, T. ;
Darazs, Z. ;
Jex, I. .
PHYSICA SCRIPTA, 2010, T140
[7]   AMPLITUDE SQUEEZED AND NUMBER-PHASE INTELLIGENT STATES VIA COHERENT STATE SUPERPOSITION [J].
ADAM, P ;
JANSZKY, J ;
VINOGRADOV, AV .
PHYSICS LETTERS A, 1991, 160 (06) :506-510
[8]   GAUSSIAN COHERENT STATE EXPANSION OF THE SQUEEZED STATES [J].
ADAM, P ;
JANSZKY, J ;
VINOGRADOV, AV .
OPTICS COMMUNICATIONS, 1990, 80 (02) :155-158
[9]   Properties of Quantizer and Dequantizer Operators for Qudit States and Parametric Down-Conversion [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Mechler, Matyas .
SYMMETRY-BASEL, 2021, 13 (01) :1-17
[10]   Star-Product Formalism for the Probability and Mean-Value Representations of Qudits [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Mechler, Matyas .
JOURNAL OF RUSSIAN LASER RESEARCH, 2020, 41 (05) :470-483