A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams

被引:10
|
作者
Sibolla, Bolelang H. [1 ,2 ]
Coetzee, Serena [1 ]
Van Zyl, Terence L. [3 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Ctr Geoinformat Sci, ZA-0028 Pretoria, South Africa
[2] CSIR, Meraka Inst, Earth Observat Sci & Informat Technol, ZA-0001 Pretoria, South Africa
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2000 Johannesburg, South Africa
关键词
Sensor observation; data streaming; spatio-temporal data; geovisual analyitcs; VISUALIZATION; PATTERNS; DISCOVERY; DENSITY; DESIGN; MODEL;
D O I
10.3390/ijgi7120475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] STA: A Spatio-Temporal Thematic Analytics Framework for Urban Ground Sensing
    Chen, Guizi
    Yu, Liang
    Ng, Wee Siong
    Wu, Huayu
    Kunasegaran, Usha Nanthani
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 794 - 807
  • [42] Continuous Query Processing of Spatio-Temporal Data Streams in PLACE
    Mohamed F. Mokbel
    Xiaopeng Xiong
    Moustafa A. Hammad
    Walid G. Aref
    GeoInformatica, 2005, 9 : 343 - 365
  • [43] Continuous query processing of spatio-temporal data streams in PLACE
    Mokbel, MF
    Xiong, XP
    Aref, WG
    Hammad, MA
    GEOINFORMATICA, 2005, 9 (04) : 343 - 365
  • [44] Mining Trajectories for Spatio-temporal Analytics
    Xing, Songhua
    Liu, Xuan
    He, Qing
    Hampapur, Arun
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 910 - 913
  • [45] STAT: Spatio-Temporal Analytics Toolkit
    Liu, Xuan
    Xing, Songhua
    Uppala, Murali
    Hampapur, Arun
    GEOSPATIAL INFOFUSION SYSTEMS AND SOLUTIONS FOR DEFENSE AND SECURITY APPLICATIONS, 2011, 8053
  • [46] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [47] Visual exploration of spatio-temporal relationships for scientific data
    Mehta, Sameep
    Parthasarathy, Srinivasan
    Machiraju, Raghu
    VAST 2006: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2006, : 11 - +
  • [48] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [49] Visual exploration of spatio-temporal patterns in epidemiological data
    Mayala, B. K.
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2007, 12 : 195 - 196
  • [50] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254