A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams

被引:10
|
作者
Sibolla, Bolelang H. [1 ,2 ]
Coetzee, Serena [1 ]
Van Zyl, Terence L. [3 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Ctr Geoinformat Sci, ZA-0028 Pretoria, South Africa
[2] CSIR, Meraka Inst, Earth Observat Sci & Informat Technol, ZA-0001 Pretoria, South Africa
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2000 Johannesburg, South Africa
关键词
Sensor observation; data streaming; spatio-temporal data; geovisual analyitcs; VISUALIZATION; PATTERNS; DISCOVERY; DENSITY; DESIGN; MODEL;
D O I
10.3390/ijgi7120475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [2] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [3] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [4] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [5] Spatio-Temporal Functional Dependencies for Sensor Data Streams
    Charfi, Manel
    Gripay, Yann
    Petit, Jean-Marc
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, SSTD 2017, 2017, 10411 : 182 - 199
  • [6] Visual Analytics of Cyber Physical Data Streams Using Spatio-Temporal Radial Pixel Visualization
    Hao, M.
    Marwah, M.
    Mittelstadt, S.
    Janetzko, H.
    Keim, D.
    Dayal, U.
    Bash, C.
    Felix, C.
    Patel, C.
    Hsu, M.
    Chen, Y.
    Hund, M.
    VISUALIZATION AND DATA ANALYSIS 2013, 2013, 8654
  • [7] Spatio-temporal data exploration for visual analytics in urban systems
    Nemocon, Camilo
    Tiberio Hernandez, Jose
    OBRAS COLECTIVAS EN CIENCIAS DE LA COMPUTACION, 2018, : 399 - 410
  • [8] Visual Analytics of the Spatio-temporal Multidimensional Air Monitoring Data
    Zhou, Zhiguang
    Hu, Dixin
    Liu, Yanan
    Chen, Weifeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (08): : 1477 - 1487
  • [9] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhiguang Zhou
    Huihui Li
    Fang Liu
    Yanan Liu
    Chaogeng Huang
    Yubo Tao
    Hai Lin
    Weihua Su
    Journal of Visualization, 2018, 21 : 337 - 350
  • [10] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhou, Zhiguang
    Li, Huihui
    Liu, Fang
    Liu, Yanan
    Huang, Chaogeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    JOURNAL OF VISUALIZATION, 2018, 21 (02) : 337 - 350