A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams

被引:10
|
作者
Sibolla, Bolelang H. [1 ,2 ]
Coetzee, Serena [1 ]
Van Zyl, Terence L. [3 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Ctr Geoinformat Sci, ZA-0028 Pretoria, South Africa
[2] CSIR, Meraka Inst, Earth Observat Sci & Informat Technol, ZA-0001 Pretoria, South Africa
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2000 Johannesburg, South Africa
关键词
Sensor observation; data streaming; spatio-temporal data; geovisual analyitcs; VISUALIZATION; PATTERNS; DISCOVERY; DENSITY; DESIGN; MODEL;
D O I
10.3390/ijgi7120475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [2] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [3] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [4] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhou, Zhiguang
    Li, Huihui
    Liu, Fang
    Liu, Yanan
    Huang, Chaogeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    JOURNAL OF VISUALIZATION, 2018, 21 (02) : 337 - 350
  • [5] Collaborative Visual Analytics of Multi-dimensional and Spatio-temporal Data
    Zhou Z.
    Sun C.
    Le D.
    Shi C.
    Liu Y.
    Liu, Yuhua (liuyuhua@zufe.edu.cn), 1600, Institute of Computing Technology (29): : 2245 - 2255
  • [6] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [7] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226
  • [8] Managing Spatio-Temporal Data Streams on AUVs
    Werner, Tobias
    Brinkhoff, Thomas
    2018 IEEE/OES AUTONOMOUS UNDERWATER VEHICLE WORKSHOP (AUV), 2018,
  • [9] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2021, 9 : 165014 - 165033
  • [10] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390