Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs

被引:12
作者
Biswas, Imran H. [1 ]
Jakobsen, Espen R. [2 ]
Karlsen, Kenneth H. [1 ]
机构
[1] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway
[2] Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway
关键词
integro-partial differential equation; viscosity solution; finite difference scheme; error estimate; stochastic optimal control; Levy process; Bellman equation;
D O I
10.1142/S0219891608001416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Error estimates are derived for a class of finite difference-quadrature schemes approximating viscosity solutions of nonlinear degenerate parabolic integro-PDEs with variable diffusion coefficients. The relevant equations can be viewed as Bellman equations associated to a class of controlled jump-diffusion (Levy) processes. The results cover both finite and infinite activity cases.
引用
收藏
页码:187 / 219
页数:33
相关论文
共 23 条
[11]  
BISWAS IH, 2007, CONT MATH, V429, P19
[12]  
Cont R., 2004, FINANCIAL MODELING J
[13]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[14]  
Fleming W., 2006, CONTROLLED MARKOV PR
[15]   Continuous dependence estimates for viscosity solutions of integro-PDEs [J].
Jakobsen, ER ;
Karlsen, KH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 212 (02) :278-318
[17]  
JAKOBSEN ER, UNPUB NUMER MATH
[18]   A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations [J].
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 13 (02) :137-165
[19]   On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients [J].
Krylov, NV .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :1-16
[20]   The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients [J].
Krylov, NV .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 52 (03) :365-399